
Patterns of Patterns

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 30 — 12/06/2007

© University of Colorado, 2007

1Saturday, December 8, 2007



Lecture Goals

• Cover Material from Chapter 12 of the Design Patterns Textbook

2Saturday, December 8, 2007



Patterns of Patterns

• Patterns can be

• used together in a single system (we’ve seen this several times)

• can be combined to create, in essence, a new pattern

• Chapter 12 does a good job of showing both of these situations in use

• DuckSimulator Revisited: An example that uses six patterns at once

• Model View Controller: A pattern that makes use of multiple patterns

• We’ll see many examples as we move through this lecture

3Saturday, December 8, 2007



But first… what pattern is this?

regBar(Bar)
remBar(Bar)
notBars()

Foo

«Interface»

heyYou()

Bar

«Interface»

bars

*

getSecret()
setSecret()

secret_data
RealFoo

RealBar
foo

Remember that the names of classes participating in a pattern is unimportant; Its 
the structure (of the relationships and methods) that’s important!

4Saturday, December 8, 2007



Duck Simulator Revisited

• We’ve been asked to build a new Duck Simulator by a Park Ranger interested 
in tracking various types of water fowl, ducks in particular.

• New Requirements

• Ducks are the focus, but other water fowl (e.g. Geese) can join in too

• Need to keep track of how many times duck’s quack

• Control duck creation such that all other requirements are met

• Allow ducks to band together into flocks and subflocks

• Generate a notification when a duck quacks

• Note: to avoid coding to an implementation, replace all instances of the word 
“duck” above with the word “Quackable”

5Saturday, December 8, 2007



Opportunities for Patterns

• There are several opportunities for adding patterns to this program

• New Requirements

• Ducks are the focus, but other water fowl (e.g. Geese) can join in too (ADAPTER)

• Need to keep track of how many times duck’s quack (DECORATOR)

• Control duck creation such that all other requirements are met (FACTORY)

• Allow ducks to band together into flocks and subflocks (COMPOSITE and ITERATOR)

• Generate a notification when a duck quacks (OBSERVER)

• Lets take a look at this example via a class diagram perspective

6Saturday, December 8, 2007



Step 1: Need an Interface

quack()

Quackable

«interface»

All simulator participants will implement this interface

7Saturday, December 8, 2007



Step 2: Need Participants

Interloper!

quack()

Quackable

«interface»

MallardDuck RedheadDuck DuckCall RubberDuck

honk()
Goose

8Saturday, December 8, 2007



Step 3: Need Adapter

quack()

Quackable
«interface»

MallardDuck RedheadDuck DuckCall RubberDuck

honk()
Goose

GooseAdapter

goose

All participants are now Quackables,
allowing us to treat them uniformly

9Saturday, December 8, 2007



Review: (Object) Adapter Structure

Client
request()

Target
«interface»

request()
Adapter

specificRequest()
Adaptee

adaptee.specificRequest()

Quackable

Goose

GooseAdapter

quack() { goose.honk() }

10Saturday, December 8, 2007



Step 4: Use Decorator to Add Quack Counting

quack()

Quackable

«interface»

quack()
static getQuacks(): int

QuackCounter

duck

Previous classes/relationships are all still there… just elided for clarity

Note: two relationships between QuackCounter and Quackable
What do they mean?

11Saturday, December 8, 2007



Review: Decorator Structure

methodA()

methodB()

Component

methodA()

methodB()

...

att1

att2

ConcreteComponent
methodA()

methodB()

Decorator

methodA()

methodB()

...

ConcreteDecoratorA

methodA()

methodB()

...

newatt1

newatt2

ConcreteDecoratorB

component
Quackable

MallardDuck
QuackCounter

No need for abstract Decorator interface in this situation; note that QuackCounter follows 
ConcreteDecorators, as it adds state and methods on top of the original interface.

12Saturday, December 8, 2007



Step 5: Add Factory to Control Duck Creation

createMallardDuck(): Quackable
createRedheadDuck() : Quackable
createDuckCall(): Quackable
createRubberDuck(): Quackable

AbstractDuckFactory

DuckFactory CountingDuckFactory

CountingDuckFactory returns ducks that are automatically wrapped 
by the QuackCounter developed in Step 4

This code is used by a method in DuckSimulator (not previously 
shown) that accepts an instance of AbstractDuckFactory as a 
parameter. Demonstration.

13Saturday, December 8, 2007



Review: Abstract Factory Structure

Client
createProductA(): AbstractProductA

createProductB(): AbstractProductB

AbstractFactory
«Interface»

createProductA(): ProductA1

createProductB(): ProductB1

ConcreteFactoryA
createProductA(): ProductA2

createProductB(): ProductB2

ConcreteFactoryB

AbstractProductA
«Interface»

AbstractProductB
«Interface»

ProductA1 ProductA2 ProductB1 ProductB2

factory

Quackable

MallardDuck

DuckSimulator
Abstract

DuckFactory

DuckFactory Counting
DuckFactory

14Saturday, December 8, 2007



Step 6: Add support for Flocks with Composite

quack()

Quackable

«interface»

MallardDuck RedheadDuck DuckCall RubberDuckadd(Quackable)
quack()

Flock

quackers

Note: Iterator pattern is hiding inside of Flock.quack(); Demonstration

Note: This is a variation on Composite, in which the Leaf and Composite classes have different 
interfaces;

Only Flock has the “add(Quackable)” method.

Client code has to distinguish between Flocks and Quackables as a result. Resulting code is 
“safer” but less transparent.

15Saturday, December 8, 2007



Review: Composite Structure

Client

op1()
op2()
add(Component)
remove(Component)
getChild(int): Component

Component

op1()
op2()

Leaf
add(Component)
remove(Component)
getchild(int): Component
op1()
op2()

Composite

children

*

DuckSimulator

Quackable

MallardDuck

Flock

16Saturday, December 8, 2007



Step 7: Add Quack Notification via Observer

registerObserver(Observer)
notifyObservers()

QuackObservable
«interface»

quack()

Quackable
«interface»

update(QuackObservable)

Observer
«interface»Observable

observers

QuackologistMallardDuck

observable

Cool implementation of the Observer pattern. All Quackables are made Subjects by 
having Quackable inherit from QuackObserver. To avoid duplication of code, an 
Observable helper class is implemented and composed with each ConcreteQuackable 
class. Flock does not make use of the Observable helper class directly; instead it 
delegates those calls down to its leaf nodes. Demonstration.

17Saturday, December 8, 2007



Review: Observer Structure

registerObserver()
removeObserver()
notifyObservers()

Subject
«Interface»

update()

Observer
«Interface»

observers

*

getState()
setState()

state
ConcreteSubject

Observer
subject

Quackable
via

QuackObservable

MallardDuck
composed with

Observable
Quackologist

Observer

18Saturday, December 8, 2007



Counting Roles

• As you can see, a single class will play multiple roles in a design

• Quackable defines the shared interface for five of the patterns

• Each Quackable implementation has four roles to play: Leaf, 
ConcreteSubject, ConcreteComponent, ConcreteProduct

• You should now see why names do not matter in patterns

• Imagine giving MallardDuck the following name:

• MallardDuckLeafConcreteSubjectComponentProduct

• !!!

• Instead, its the structure of the relationships between classes and the 
behaviors implemented in their methods that make a pattern REAL

• And when these patterns live in your code, they provide multiple extension 
points throughout your design. Need a new product, no problem. Need a 
new observer, no problem. Need a new dynamic behavior, no problem.

19Saturday, December 8, 2007



Model-View-Controller: A Pattern of Patterns

• Model-View-Controller (MVC) is a ubiquitous pattern that allows information 
(stored in models) to be viewed in a number of different ways (views), with 
each view aided by code that handles user input or notifies the view of 
updates to its associated models (controllers)

• Speaking broadly

• tools/frameworks for creating views are ubiquitious

• the widgets of any GUI toolkit, templates in Web frameworks, etc.

• data storage frameworks abound for handling models

• generic data structures + persistence mechanisms (files, RDBMs, …)

• controllers are almost ALWAYS written by hand

• lone exception (that I know of) is Apple’s Cocoa Bindings

• ability to specify a binding between a value maintained by a 
widget and a similar value in your application’s model

20Saturday, December 8, 2007



MVC Roles

• As mentioned, MVC is a pattern for manipulating information that may be 
displayed in more than one view

• Model: data structure(s) being manipulated

• may be capable of notifying observers of state changes

• View: a visualization of the data structure

• having more than one view is fine

• MVC keeps all views in sync as the model changes

• Controller: handle user input on views

• make changes to model as appropriate

• more than one controller means more than one “interaction style” is 
available

21Saturday, December 8, 2007



MVC: Structure

Controller

ModelView

1. The user did
something

2. Change your state
3. Change your

display

4. I've changed!

5. Tell me how

22Saturday, December 8, 2007



MVC: Hidden Patterns

• Observer pattern used on models

• Views keep track of changes on models via the observer pattern

• A variation is to have controllers observe the models and notify views 
as appropriate

• View and Controller make use of the Strategy pattern

• When an event occurs on the view, it delegates to its current controller

• Want to switch from direct manipulation to audio only? Switch 
controllers

• Views (typically) implement the composite pattern

• In GUI frameworks, tell the root level of a view to update and all of its sub-
components (panels, buttons, scroll bars, etc.) update as well

• Others: Events are often handled via the Command pattern, views can be 
dynamically augmented with the decorator pattern, etc.

23Saturday, December 8, 2007



MVC Examples

• DJView

• Example of one model, one controller, two views

• Allows you to set a value called “beats per minute” and watch a progress 
bar “pulse” to that particular value

• In book, referenced a bunch of midi-related code that did not work on my 
machine: was supposed to play a “beat track” that matched the specified 
tempo

• I ripped that code out and substituted a thread that emits “beats” at the 
specified rate

• Heart Controller

• Shows how previous behavior can be altered by changing the model and 
controller classes… now progress bar “pulse” mimics a human heart

24Saturday, December 8, 2007



Wrapping Up

• We’ve shown two ways in which “patterns of patterns” can appear in code

• The first is when you use multiple patterns in a single design

• Each individual pattern focuses on one thing, but the combined effect is 
to provide you with a design that has multiple extension points

• The second is when two or more patterns are combined into a solution 
that solves a recurring or general problem

• MVC is such a pattern (also known as a Compound pattern) that makes 
use of Observer, Strategy, and Composite to provide a generic solution 
to the problem of visualizing and interacting with the information stored 
in an application’s model classes

25Saturday, December 8, 2007



Coming Up Next

• Lecture 31: Patterns in the Real World

• Chapter 13 of Design Patterns Textbook

• Lecture 32: Refactoring

26Saturday, December 8, 2007


