
Proxy Pattern

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 29 — 12/04/2007

© University of Colorado, 2007

1Wednesday, December 5, 2007

Lecture Goals

• Cover Material from Chapter 11 of the Design Patterns Textbook

• Proxy Pattern

2Wednesday, December 5, 2007

Proxy Pattern: Definition

• The Proxy Pattern provides a surrogate or placeholder for another object to
control access to it.

• Use the Proxy Pattern to create a representative object that controls
access to another object, which may be remote, expensive to create, or in
need of securing

• We’ll see several examples of the Proxy pattern in use in this lecture,
including the Remote Proxy, Virtual Proxy, and Protection Proxy

3Wednesday, December 5, 2007

Proxy Pattern: Structure

request()

Subject
«interface»

request()
RealSubject

request()
Proxy

subject

A Proxy and “Real” Subject class both implement a Subject interface.
Clients interact with the Proxy, which controls access to the methods of
the RealSubject class. When appropriate, the Proxy will forward requests
to the RealSubject via delegation. The Proxy may also respond to client
requests itself, or it may reject the request (perhaps by throwing an
exception).

4Wednesday, December 5, 2007

Gumball Revisited

• To illustrate the Remote Proxy variation of the Proxy Pattern (in which the
Proxy and RealSubject objects are on different machines), we return to the
Gumball Machine example of the previous lecture

• Our client would like a way to monitor gumball machines remotely

• to enable regular status reports and to allow them to do a better job of
keeping the gumball machines full of gumballs

5Wednesday, December 5, 2007

Step 1: Update Gumball Machine

public class GumballMachine {1

2

 State soldOutState;3

 State noQuarterState;4

 State hasQuarterState;5

 State soldState;6

 State winnerState;7

 8

 State state = soldOutState;9

 int count = 0;10

 String location;11

 12

 public GumballMachine(String location, int count) {13

 soldOutState = new SoldOutState(this);14

 noQuarterState = new NoQuarterState(this);15

 hasQuarterState = new HasQuarterState(this);16

 soldState = new SoldState(this);17

 winnerState = new WinnerState(this);18

19

 this.count = count;20

 if (count > 0) {21

 state = noQuarterState;22

 } 23

 this.location = location;24

 }25

 26

 public void insertQuarter() {27

 state.insertQuarter();28

 }29

 30

 public void ejectQuarter() {31

 state.ejectQuarter();32

 }33

 34

 public void turnCrank() {35

 state.turnCrank();36

 state.dispense();37

 }38

39

 void setState(State state) {40

 this.state = state;41

 }42

 43

 void releaseBall() {44

 System.out.println("A gumball comes rolling out the slot...");45

 if (count != 0) {46

 count = count - 1;47

 }48

 }49

 50

 public int getCount() {51

 return count;52

 }53

54

 public void refill(int count) {55

 this.count = count;56

 state = noQuarterState;57

 }58

59

 public State getState() {60

First, we update the
Gumball Machine class
to store its location

We also add a getter
method for this attribute
(not shown)

6Wednesday, December 5, 2007

Step 2: Create a Gumball Monitor Class

public class GumballMonitor {1

 GumballMachine machine;2

 3

 public GumballMonitor(GumballMachine machine) {4

 this.machine = machine;5

 }6

 7

 public void report() {8

 System.out.println("Gumball Machine: " + machine.getLocation());9

 System.out.println("Current inventory: " + machine.getCount() + " gumballs");10

 System.out.println("Current state: " + machine.getState());11

 }12

}13

14

Simple! The monitor takes an instance of the Gumball machine class and
can generate a status report: location, number of gumballs, and the
machine’s current state.

But something is wrong with this design… what?

7Wednesday, December 5, 2007

Going Remote

• The Gumball Monitor is coded to
accept a pointer to a local Gumball
Machine object

• But we need to monitor Gumball
Machines that are not physically
present

• Or in computer speak: We need
access to a “remote” Gumball
Machine object, one that “lives” in
a different JavaVM, or address
space.

• To do this, we’ll use a technology
built into Java, called RMI, short for
Remote Method Invocation

Gumball
Monitor

Proxy
Gumball
Machine

Machine Boundary

The Gumball Monitor talks to the
Proxy object, thinking that its a
Gumball Machine object. The Proxy
communicates with the “real”
Gumball Machine, and returns any
results back to the monitor.

8Wednesday, December 5, 2007

Approach

• Quick Introduction to RMI

• Change Gumball Machine so that it becomes a “remote service”

• Create a Proxy object that can talk to this “remote service” while looking like
a local Gumball Machine to the Gumball Monitor class

9Wednesday, December 5, 2007

Remote Method Invocation (I)

Client
Client
Helper

Machine Boundary

Service
Service
Helper

RMI creates “helper” objects that live on the client and service sides of a
remote transaction. The client helper acts as a proxy for the remote service
and sends method call information to the service helper. The service helper
invokes the requested method on the service and returns the results.

10Wednesday, December 5, 2007

Remote Method Invocation (II)

• RMI provides tools to automate the creation of the “helper” objects

• The client helper is often called the “stub”

• since none of the service methods are actually implemented

• The service helper is often called the “skeleton”

• since it often has methods that need to be filled in by the developer to
hook it up to the actual service object

• This architecture is common to many distributed computing frameworks

• These architectures do a lot to make the distributed nature of these method
calls hidden from the client object… its not possible to entirely hide this
process however, and the client does need to be prepared for exceptions that
wouldn’t normally occur when invoking methods on a local object

11Wednesday, December 5, 2007

Remote Method Invocation (III)

• Step One: Make a remote interface

• The interface defines the methods that the remote service provides to the
client; both the client helper (stub) and the service implement this interface

• Step Two: Make a remote implementation

• The actual service object, in this case our Gumball Machine

• Step Three: Generate the stubs and skeletons

• Using a tool that ships with the Java SDK: rmic

• Step Four: Start the RMI registry

• So client objects can find service objects at run-time

• Step Five: Start the remote service

• Before clients can make calls on the remote service, it needs to be running

• Step Six: Run the client, which can now access the remote service

12Wednesday, December 5, 2007

Remote Method Invocation (IV)

• Demonstration on Simple Example

• Simple server with single method

• implements MyRemote interface and extends UnicastRemoteObject

• Server and client run on the same machine

• Warning: I found RMI to be a bit fickle

• For instance, I got this example to work, but only after I set my classpath
to equal “.” (i.e. the current directory) and then performed all steps of the
example with that particular classpath (sigh)

13Wednesday, December 5, 2007

Gumball RMI Architecture

Gumball
Monitor

Stub

Machine Boundary

Gumball
Machine

Skeleton

14Wednesday, December 5, 2007

Step 1: Create Remote Interface

import java.rmi.*;1

2

public interface GumballMachineRemote extends Remote {3

 public int getCount() throws RemoteException;4

 public String getLocation() throws RemoteException;5

 public State getState() throws RemoteException;6

}7

8

Simple translation of GumballMachine API into a Remote interface.

Note: RMI has a restriction that all return types and parameters need to be
“serializable” which means that RMI needs to know how to “dismantle” an
object of a type, send it across the network, and then assemble the
information coming across the wire back into the original object.

See page 451 of the book to see how “State” is made serializable…

15Wednesday, December 5, 2007

Step 2: Update Gumball Machine

import java.rmi.*;1

import java.rmi.server.*;2

 3

public class GumballMachine4

 extends UnicastRemoteObject implements GumballMachineRemote 5

{6

 State soldOutState;7

 State noQuarterState;8

 State hasQuarterState;9

 State soldState;10

 State winnerState;11

 12

 State state = soldOutState;13

 int count = 0;14

 String location;15

16

 public GumballMachine(String location, int numberGumballs) throws RemoteException {17

 soldOutState = new SoldOutState(this);18

 noQuarterState = new NoQuarterState(this);19

 hasQuarterState = new HasQuarterState(this);20

 soldState = new SoldState(this);21

 winnerState = new WinnerState(this);22

23

 this.count = numberGumballs;24

 if (numberGumballs > 0) {25

 state = noQuarterState;26

 } 27

 this.location = location;28

 }29

 30

 31

 public void insertQuarter() {32

 state.insertQuarter();33

 }34

 35

 public void ejectQuarter() {36

 state.ejectQuarter();37

 }38

 39

 public void turnCrank() {40

 state.turnCrank();41

 state.dispense();42

 }43

44

 void setState(State state) {45

 this.state = state;46

 }47

 48

 void releaseBall() {49

 System.out.println("A gumball comes rolling out the slot...");50

 if (count != 0) {51

 count = count - 1;52

 }53

 }54

55

 public void refill(int count) {56

 this.count = count;57

 state = noQuarterState;58

 }59

 60

16Wednesday, December 5, 2007

Step 3: Update Gumball Monitor

import java.rmi.*;1

2

public class GumballMonitor {3

4

 GumballMachineRemote machine;5

6

 public GumballMonitor(GumballMachineRemote machine) {7

 this.machine = machine;8

 }9

10

 public void report() {11

 try {12

 System.out.println("Gumball Machine: " + machine.getLocation());13

 System.out.println("Current inventory: " + machine.getCount() + " gumballs");14

 System.out.println("Current state: " + machine.getState());15

 } catch (RemoteException e) {16

 e.printStackTrace();17

 }18

 }19

}20

21

17Wednesday, December 5, 2007

Step 4: Create “main” program for service

import java.rmi.*;1

2

public class GumballMachineTestDrive {3

 4

 public static void main(String[] args) {5

 GumballMachineRemote gumballMachine = null;6

 int count;7

8

 if (args.length < 2) {9

 System.out.println("GumballMachineTestDrive <name> <inventory>");10

 System.exit(1);11

 }12

13

 try {14

 count = Integer.parseInt(args[1]);15

16

 gumballMachine = 17

 new GumballMachine(args[0], count);18

 Naming.rebind(args[0], gumballMachine);19

 } catch (Exception e) {20

 e.printStackTrace();21

 }22

 }23

}24

25

Note: NOT the same as
the code in the book
(which I couldn’t get to
work).

18Wednesday, December 5, 2007

Step 5: Create “main” program for client

import java.rmi.*;1

2

public class GumballMonitorTestDrive {3

4

 public static void main(String[] args) {5

 String[] location = {"rmi://127.0.0.1/santafe",6

 "rmi://127.0.0.1/boulder",7

 "rmi://127.0.0.1/seattle"}; 8

9

 GumballMonitor[] monitor = new GumballMonitor[location.length];10

11

 for (int i=0;i < location.length; i++) {12

 try {13

 GumballMachineRemote machine = 14

 (GumballMachineRemote) Naming.lookup(location[i]);15

 monitor[i] = new GumballMonitor(machine);16

 } catch (Exception e) {17

 e.printStackTrace();18

 }19

 }20

21

 for(int i=0; i < monitor.length; i++) {22

 monitor[i].report();23

 }24

 }25

}26

27

Note: NOT the same as the
code in the textbook (which
I couldn’t get to work).

19Wednesday, December 5, 2007

Step 6: Compile, Generate, Run

1. set CLASSPATH equal to “.” (i.e. the current directory)

2. javac *.java

3. rmic GumballMachine

4. rmiregistry &

5. java GumballMachineTestDrive boulder 50 &

6. java GumballMachineTestDrive seattle 250 &

7. java GumballMachineTestDrive santafe 150 &

8. java GumballMonitorTestDrive

• Demonstration

20Wednesday, December 5, 2007

Virtual Proxy

• Virtual Proxy is a variation of Proxy that provides control over when
“expensive” objects are created

• whereby expensive typically means

• “takes a long time to create” or

• “object takes up a lot of memory”

• The virtual proxy ensures that the object is only created when it is absolutely
needed and “stands in” for the real object while the “expensive” creation
process takes place

• Example: Loading Images Over a Network

• Icon: Swing Interface

• ImageIcon: Display Image

• ImageProxy: Acts like ImageIcon
while the image is loading...

getIconWidth()
getIconHeight()
paintIcon()

Icon
«interface»

request()
ImageIcon

request()
ImageProxy

subjectDemonstration

21Wednesday, December 5, 2007

Protection Proxy

• A protection proxy is a variation on the Proxy pattern in which the proxy looks
at the caller and the method being called and decides if it wants to forward
the method call to the real subject

• In this variation, the proxy is implementing a form of access control on top
of the real subject; without this access control, any object that got a
reference to the real subject could call any of its methods

• Example:

• A “Hot or Not” website

• Model Class: Person

• Problems

• Owners calling “setRating(10)” over and over to inflate their rating

• Non-Owners calling various setter methods to capriciously (or
maliciously) change the details of another person

22Wednesday, December 5, 2007

Java’s Built-In Proxy Services

• In this example, the book decides to look at Java’s built in support of the
Proxy pattern: aka Dynamic Proxies

• Structure of Java’s Built-In Proxy support

request()

Subject
«interface»

request()
RealSubject

request()
Proxy

subject

invoke()

InvocationHandler
«interface»

invoke()
InvocationHandler

Proxy is now an auto-generated class that is configured at creation time
with an invocation handler. This handler determines what requests get
forwarded to the RealSubject.

23Wednesday, December 5, 2007

Hot Or Not (I): Specify Interface for Subject

public interface PersonBean {1

 2

 String getName();3

 String getGender();4

 String getInterests();5

 String getStringRep();6

 double getHotOrNotRating();7

 8

 void setName(String name);9

 void setGender(String gender);10

 void setInterests(String interests);11

 void setHotOrNotRating(double rating); 12

 13

}14

15
Note: interface is slightly different from that in book. I changed it to make
the output of the test program more understandable!

Differences:
 Added “String getStringRep();”
 Changed: “HotOrNot” methods to work with “double” not “int”

24Wednesday, December 5, 2007

Hot Or Not (II): Implement RealSubject

public class PersonBeanImpl implements PersonBean {1

2

 String name;3

 String gender;4

 String interests;5

 double rating;6

 int ratingCount = 0;7

 8

 public String getName() {9

 return name; 10

 } 11

 12

 public String getGender() {13

 return gender;14

 }15

 16

 public String getInterests() {17

 return interests;18

 }19

 20

 public double getHotOrNotRating() {21

 if (ratingCount == 0) return 0;22

 return (rating/ratingCount);23

 }24

 25

 public void setName(String name) {26

 this.name = name;27

 }28

 29

 public void setGender(String gender) {30

 this.gender = gender;31

 } 32

 33

 public void setInterests(String interests) {34

 this.interests = interests;35

 } 36

 37

 public void setHotOrNotRating(double rating) {38

 this.rating += rating; 39

 ratingCount++;40

 }41

42

 public String getStringRep() {43

 StringBuffer buf = new StringBuffer();44

 buf.append("Name : " + name + "\n");45

 buf.append("Gender : " + gender + "\n");46

 buf.append("Interests: " + interests + "\n");47

 buf.append("Rating : " + rating + " / " + ratingCount + " = " + getHotOrNotRating() + "\n");48

 return buf.toString();49

 }50

 51

}52

53

<rest of class not shown>

Standard “information
holder” object with
getter/setter routines.

HotOrNot methods
keep track of number
of ratings submitted
and return an average
value.

getStringRep()
produces a report of
all current values of the
object.

25Wednesday, December 5, 2007

Hot Or Not (III): Implement InvocationHandlers

import java.lang.reflect.*;1

 2

public class OwnerInvocationHandler implements InvocationHandler { 3

 PersonBean person;4

 5

 public OwnerInvocationHandler(PersonBean person) {6

 this.person = person;7

 }8

 9

 public Object invoke(Object proxy, Method method, Object[] args) 10

 throws IllegalAccessException {11

 12

 try {13

 if (method.getName().startsWith("get")) {14

 return method.invoke(person, args);15

 } else if (method.getName().equals("setHotOrNotRating")) {16

 throw new IllegalAccessException();17

 } else if (method.getName().startsWith("set")) {18

 return method.invoke(person, args);19

 } 20

 } catch (InvocationTargetException e) {21

 e.printStackTrace();22

 } 23

 return null;24

 }25

}26

27

Note: Makes use of Java’s Reflection API; any attempt to set
your own rating is denied.

26Wednesday, December 5, 2007

Hot Or Not (IV): Implement InvocationHandlers
import java.lang.reflect.*;1

 2

public class NonOwnerInvocationHandler implements InvocationHandler { 3

 PersonBean person;4

 5

 public NonOwnerInvocationHandler(PersonBean person) {6

 this.person = person;7

 }8

 9

 public Object invoke(Object proxy, Method method, Object[] args) 10

 throws IllegalAccessException {11

 12

 try {13

 if (method.getName().startsWith("get")) {14

 return method.invoke(person, args);15

 } else if (method.getName().equals("setHotOrNotRating")) {16

 return method.invoke(person, args);17

 } else if (method.getName().startsWith("set")) {18

 throw new IllegalAccessException();19

 } 20

 } catch (InvocationTargetException e) {21

 e.printStackTrace();22

 } 23

 return null;24

 }25

}26

27

Note: Makes use of Java’s Reflection API; any attempt to set
your a person’s attributes (other than rating) is denied.

27Wednesday, December 5, 2007

Hot Or Not (V): Create Dynamic Proxies
61

62

 PersonBean getOwnerProxy(PersonBean person) {63

 64

 return (PersonBean) Proxy.newProxyInstance(65

 person.getClass().getClassLoader(),66

 person.getClass().getInterfaces(),67

 new OwnerInvocationHandler(person));68

 }69

70

 PersonBean getNonOwnerProxy(PersonBean person) {71

 72

 return (PersonBean) Proxy.newProxyInstance(73

 person.getClass().getClassLoader(),74

 person.getClass().getInterfaces(),75

 new NonOwnerInvocationHandler(person));76

 }77

78

 PersonBean getPersonFromDatabase(String name) {79

 return (PersonBean)datingDB.get(name);80

 }81

82

 void initializeDatabase() {83

 PersonBean joe = new PersonBeanImpl();84

 joe.setName("Joe Javabean");85

 joe.setGender("Male");86

 joe.setInterests("cars, computers, music");87

 joe.setHotOrNotRating(7);88

 datingDB.put(joe.getName(), joe);89

90

 PersonBean kelly = new PersonBeanImpl();91

 kelly.setName("Kelly Klosure");92

 kelly.setGender("Female");93

 kelly.setInterests("ebay, movies, music");94

 kelly.setHotOrNotRating(6);95

 datingDB.put(kelly.getName(), kelly);96

 }97

}98

99

Call Proxy’s newProxyInstance() method; provide access to RealSubject’s
class loader, its interfaces, and the desired invocation handler.

Client code then gets an instance of RealSubject and wraps it.

Demon-
stration

28Wednesday, December 5, 2007

Wrapping Up

• Proxy is an extremely flexible pattern that allows you to control access to a
particular object

• We’ve seen examples of proxies that enable distributed access, control of
“expensive” objects, and protection of an object’s methods

• The book also mentions the use of proxies to

• mimic a firewall in controlling access to network resources

• keep track of the number of objects pointing at a subject

• cache the results of expensive operations

• protect an object from being accessed by multiple threads

• and more

29Wednesday, December 5, 2007

Coming Up Next

• Lecture 30: Patterns of Patterns

• Read Chapter 12 of the Design Patterns Textbook

• Lecture 31: Refactoring

30Wednesday, December 5, 2007

