emplate Method

Kenneth M. Anderson
University of Colorado, Boulder
CSCIl 4448/6448 — Lecture 24 — 11/15/2007

© University of Colorado, 2007

Friday, November 16, 2007

L ecture Goals

e Cover Material from Chapter 8 of the Design Patterns Textbook

e Template Method Pattern

Friday, November 16, 2007

Template Method: Definition

e The Template Method Pattern defines the skeleton of an algorithm in a
method, deferring some steps to subclasses. Template Method lets
subclasses redefine certain steps of an algorithm without changing the
algorithm’s structure

¢ Template Method defines the steps of an algorithm and allows subclasses
to provide the implementation for one or more steps

e Makes the algorithm abstract
e Each step of the algorithm is represented by a method
e Encapsulates the details of most steps
e Steps (methods) handled by subclasses are declared abstract

e Shared steps (concrete methods) are placed in the same class that
has the template method, allowing for code re-use among the
various subclasses

Friday, November 16, 2007

Template Method: Structure

AbstractClass

primitiveOperation1();

templateMethod()
primitiveOperation1()
primitiveOperation2()

ConcreteClass

primitiveOperation()

primitiveOperation2()

primitiveOperation2()

Very simple pattern...
...but also very powerful

Used typically in application frameworks, e.qg.
Cocoa and .Net

primitiveOperationi() and primitiveOperation2|)
are sometimes referred to as hook methods
as they allow subclasses to hook their behavior
into the service provided by AbstractClass

Friday, November 16, 2007

—xample: Tea and Coffee

e The book returns to the Starbuzz example and shows the training guide for
baristas and, in particular, the recipes for making coffee and tea

e Coffee
e Boil water
e Brew coffee in boiling water
e Pour coffee in cup
e Add sugar and milk
* Tea
e Boil water
e Steep tea in boiling water
e Pour tea in cup

e Add lemon

Friday, November 16, 2007

Coffee Implementation

1 public class Coffee {

2

3 void prepareRecipe() {

4 boilWater();

5 brewCoffeeGrinds();

6 pourInCup();

7 addSugarAndMilk();

8 }

9

10 public void boilWater() {

11 System.out.println("Boiling water");

12 }

13

14 public void brewCoffeeGrinds() {

15 System.out.println("Dripping Coffee through filter");
16 }

17

18 public void pourInCup() {

19 System.out.println("Pouring into cup");
20 }

21

22 public void addSugarAndMilk() {

23 System.out.println("Adding Sugar and Milk");
24 }

25}

26

Friday, November 16, 2007

Tea Implementation

1 public class Tea {

2

3 void prepareRecipe() {

4 boilWater();

5 steepTeaBag();

6 pourInCup();

7 addLemon () ;

8 }

9

10 public void boilWater () {

11 System.out.println("Boiling water");
12 }

13

14 public void steepTeaBag() {

15 System.out.println("Steeping the tea");
16 }

17

18 public void addLemon() {

19 System.out.println("Adding Lemon'");
20 }
21
22 public void pourInCup() {

23 System.out.println("Pouring into cup");
24 }

25 }

26

Friday, November 16, 2007

Code Duplication!

¢ \We have code duplication occurring in these two classes
e boilWater() and pourlnCup() are exactly the same

¢ | ets get rid of the duplication

CaffeineBeverage
prepareRecipe()
boilWater()
pourlnCup()

e ———

Coffee Tea
prepareRecipe() prepareRecipe()
brewCoffeeGrinds() steepTeal)
addSugarAndMilk() addLemon()

Friday, November 16, 2007

Similar algorithms

e The structure of the algorithms in prepareRecipe() is similar for Tea and Coffee

e \We can improve our code further by making the code in prepareRecipel()
more abstract

e brewCoffeeGrinds() and steepTea() = brew()
e addSugarAndMilk() and addLemon() = addCondiments)

e Excellent, now all we need to do is specify this structure in
CaffeineBeverage.prepareRecipe() and make it such that subclasses can’t
change the structure

e How do we do that?

e Answer: By convention OR by using the keyword “final” in languages
that support it

Friday, November 16, 2007

CaffeineBeverage Implementation

1 public abstract class CaffeineBeverage { \IOte: use Of final

2 | | | <eyword for

3 final void prepareRecipe() { R :

2 boilWater () prepareReceipe)

5 brew();

6 pourInCup();

7 addCondiments(); breW() anq

8 } addCondiments() are

9

10 abstract void brew(); abStr?‘Ct and must be
11 supplied by subclasses
12 abstract void addCondiments();

13

14 void boilWater() { boilWater() and

> } System.out.printin)i pourlnCup() are specified
17 and shared across all
18 void pourInCup() { subclasses

19 System.out.println() ;
20 }
21}

(N
N

Friday, November 16, 2007 10

Coffee And Tea Implementations

1 public class Coffee extends CaffeineBeverage {
2 public void brew() {

3 System.out.println(

4 }

5 public void addCondiments() {

6 System.out.println() ;
7 }

8 }

9
10 public class Tea extends CaffeineBeverage {
11 public void brew() {
12 System.out.println() ;
13 }
14 public void addCondiments() {
15 System.out.println() ;
16 }
17}
18

Nice and Simple!

Friday, November 16, 2007

What have we done”?

* Took two separate classes with separate but similar algorithms
e Noticed duplication and eliminated it by introducing a superclass

e Made steps of algorithm more abstract and specified its structure in the
superclass

e Thereby eliminating another “implicit” duplication between the two classes

¢ Revised subclasses to implement the abstract (unspecified) portions of the
algorithm... in a way that made sense for them

Friday, November 16, 2007

12

Comparison: Template Method (TM) vs. No TM

e No Template Method

e Coffee and Tea each have own
copy of algorithm

e Code is duplicated across both
classes

e A change in the algorithm would
result in a change in both classes

e Not easy to add new caffeine
beverage

e Knowledge of algorithm distributed
over multiple classes

e Template Method

e CaffeineBeverage has the algorithm
and protects it

e CaffeineBeverage shares common
code with all subclasses

e A change in the algorithm likely
impacts only CaffeineBeverage

e New caffeine beverages can easily
be plugged in

e CaffeineBeverage centralizes
knowledge of the algorithm;
subclasses plug in missing pieces

Friday, November 16, 2007

13

The Book’s Hook

e Previously | called the abstract methods that appear in a template method
“hook” methods

* The book refers to hook methods as well, but they make the following
distinction: a hook method is a concrete method that appears in the
AbstractClass that has an empty method body (or a mostly empty method
body, see example next slide), i.e.

e public void hook() {}

e Subclasses are free to override them but don’t have to since they provide
a method body, albeit an empty one

* In contrast, a subclass is forced to implement abstract methods that
appear in AbstractClass

e Hook methods, thus, should represent optional parts of the algorithm

Friday, November 16, 2007

14

Adding a Hook to Caffeine

1 public abstract class CaffeineBeverageWithHook {
2

3 void prepareRecipe() {

4 boilWater();

5 brew();

6 pourInCup();

7 if (customerWantsCondiments()) {

8 addCondiments();

9 }

10 }

11

12 abstract void brew();

13

14 abstract void addCondiments();

15

16 void boilWater() {

17 System.out.println() ;
18 }

19
20 void pourInCup() {
21 System.out.println() ;
22 }
23
24 boolean customerWantsCondiments() {
25 return true;
26 }
27 '}
28

Severage

prepareRecipe() altered to have a
hook method:
customerWantsCondiments|)

This method provides a mostly
empty method body that subclasses
can override

To make the distinction between
hook and non-hook methods more
clear, you can add the “final”
keyword to all concrete methods
that you don’t want subclasses to
touch

Friday, November 16, 2007

15

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import java.io.*;
public class CoffeeWithHook extends CaffeineBeverageWithHook {

public void brew() {
System.out.println() ;

}

public void addCondiments() {
System.out.println() ;

}

public boolean customerWantsCondiments() {

String answer = getUserInput();

if (answer.toLowerCase().startsWith()) |
return true;
} else {

return false;

}
}

private String getUserInput() {
String answer = null;

System.out.print(

Adding a
Hook to
Coffee

Demonstration

) ;

BufferedReader in = new BufferedReader (new InputStreamReader (System.in));

try {
answer = in.readLine();

} catch (IOException ioe) {
System.err.println(

}

if (answer == null) {
return ;

}

return answer;

}

) ;

Friday, November 16, 2007

16

New Design Principle: Hollywood Principle

e Don’t call us, we’ll call you

e Or, in OO terms, high-level components call low-level components, not the
other way around

¢ In the context of the template method pattern, the template method lives
In a high-level class and invokes methods that live in its subclasses

¢ This principle is similar to the dependency inversion principle we discussed
back in lecture 21 (Factory pattern): “Depend upon abstractions. Do not
depend upon concrete classes.”

e Template method encourages clients to interact with the abstract class
that defines template methods as much as possible; this discourages the
client from depending on the template method subclasses

Friday, November 16, 2007 17

Template Methods in the Wild

e Template Method is used a lot since it’s a great design tool for creating
frameworks

e the framework specifies how something should be done with a template
method

e that method invokes abstract and hook methods that allow client-specific

subclasses to “hook into” the framework and take advantage of/influence
its services

e Examples in the Java API
e Sorting using compareTo() method
* Frames in Swing
e Applets

e Demonstration

Friday, November 16, 2007 18

Template Method vs. Strategy (I)

e Both Template Method and Strategy deal with the encapsulation of algorithms

e Template Method focuses encapsulation on the steps of the algorithm

e Strategy focuses on encapsulating entire algorithms

® You can use both patterns at the same time if you want

e Strategy Structure

Client

strategy.operation()

performOperation()
/ setAlgorithm(a: Algorithm)

strategy

Algorithm

operation()

| ConcreteAlgorithm1 | ... | ConcreteAlgorithmN |

Friday, November 16, 2007

Template Method vs. Strategy (lI)

e Template Method encapsulate the details of algorithms using inheritance

e Factory Method can now be seen as a specialization of the Template
Method pattern

Creator
Product factoryMethod(): Product
operation()

B Y Sa—

ConcreteCreator
ConcreteProduct factoryMethod(): ConcreteProduct

e In contrast, Strategy does a similar thing but uses composition/delegation

Friday, November 16, 2007

Template Method vs. Strategy (ll)

e Because it uses inheritance, Template Method offers code reuse benefits not
typically seen with the Strategy pattern

e On the other hand, Strategy provides run-time flexibility because of its use of
composition/delegation

e You can switch to an entirely different algorithm when using Strategy,
something that you can’t do when using Template Method

Friday, November 16, 2007

21

Coming Up Next

e | ecture 25: lterator and Composite
e Read Chapter 9 of the Design Patterns Textbook
e | ecture 26: State and Proxy

e Read Chapters 10 and 11 of the Design Patterns Textbook

Friday, November 16, 2007

22

