
Template Method

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 24 — 11/15/2007

© University of Colorado, 2007

1Friday, November 16, 2007

Lecture Goals

• Cover Material from Chapter 8 of the Design Patterns Textbook

• Template Method Pattern

2Friday, November 16, 2007

Template Method: Definition

• The Template Method Pattern defines the skeleton of an algorithm in a
method, deferring some steps to subclasses. Template Method lets
subclasses redefine certain steps of an algorithm without changing the
algorithm’s structure

• Template Method defines the steps of an algorithm and allows subclasses
to provide the implementation for one or more steps

• Makes the algorithm abstract

• Each step of the algorithm is represented by a method

• Encapsulates the details of most steps

• Steps (methods) handled by subclasses are declared abstract

• Shared steps (concrete methods) are placed in the same class that
has the template method, allowing for code re-use among the
various subclasses

3Friday, November 16, 2007

Template Method: Structure

templateMethod()
primitiveOperation1()
primitiveOperation2()

AbstractClass

primitiveOperation1()
primitiveOperation2()

ConcreteClass

primitiveOperation1();
primitiveOperation2()

Very simple pattern…

...but also very powerful

Used typically in application frameworks, e.g.
Cocoa and .Net

primitiveOperation1() and primitiveOperation2()
are sometimes referred to as hook methods
as they allow subclasses to hook their behavior
into the service provided by AbstractClass

4Friday, November 16, 2007

Example: Tea and Coffee

• The book returns to the Starbuzz example and shows the training guide for
baristas and, in particular, the recipes for making coffee and tea

• Coffee

• Boil water

• Brew coffee in boiling water

• Pour coffee in cup

• Add sugar and milk

• Tea

• Boil water

• Steep tea in boiling water

• Pour tea in cup

• Add lemon

5Friday, November 16, 2007

Coffee Implementation

public class Coffee {1

 2

 void prepareRecipe() {3

 boilWater();4

 brewCoffeeGrinds();5

 pourInCup();6

 addSugarAndMilk();7

 }8

 9

 public void boilWater() {10

 System.out.println("Boiling water");11

 }12

 13

 public void brewCoffeeGrinds() {14

 System.out.println("Dripping Coffee through filter");15

 }16

 17

 public void pourInCup() {18

 System.out.println("Pouring into cup");19

 }20

 21

 public void addSugarAndMilk() {22

 System.out.println("Adding Sugar and Milk");23

 }24

}25

26

6Friday, November 16, 2007

Tea Implementation

public class Tea {1

 2

 void prepareRecipe() {3

 boilWater();4

 steepTeaBag();5

 pourInCup();6

 addLemon();7

 }8

 9

 public void boilWater() {10

 System.out.println("Boiling water");11

 }12

 13

 public void steepTeaBag() {14

 System.out.println("Steeping the tea");15

 }16

 17

 public void addLemon() {18

 System.out.println("Adding Lemon");19

 }20

 21

 public void pourInCup() {22

 System.out.println("Pouring into cup");23

 }24

}25

26

7Friday, November 16, 2007

Code Duplication!

• We have code duplication occurring in these two classes

• boilWater() and pourInCup() are exactly the same

• Lets get rid of the duplication

prepareRecipe()
boilWater()
pourInCup()

CaffeineBeverage

prepareRecipe()
brewCoffeeGrinds()
addSugarAndMilk()

Coffee
prepareRecipe()
steepTea()
addLemon()

Tea

8Friday, November 16, 2007

Similar algorithms

• The structure of the algorithms in prepareRecipe() is similar for Tea and Coffee

• We can improve our code further by making the code in prepareRecipe()
more abstract

• brewCoffeeGrinds() and steepTea() ⇒ brew()

• addSugarAndMilk() and addLemon() ⇒ addCondiments()

• Excellent, now all we need to do is specify this structure in
CaffeineBeverage.prepareRecipe() and make it such that subclasses can’t
change the structure

• How do we do that?

• Answer: By convention OR by using the keyword “final” in languages
that support it

9Friday, November 16, 2007

CaffeineBeverage Implementation

public abstract class CaffeineBeverage {1

 2

 final void prepareRecipe() {3

 boilWater();4

 brew();5

 pourInCup();6

 addCondiments();7

 }8

 9

 abstract void brew();10

 11

 abstract void addCondiments();12

 13

 void boilWater() {14

 System.out.println("Boiling water");15

 }16

 17

 void pourInCup() {18

 System.out.println("Pouring into cup");19

 }20

}21

22

Note: use of final
keyword for
prepareReceipe()

brew() and
addCondiments() are
abstract and must be
supplied by subclasses

boilWater() and
pourInCup() are specified
and shared across all
subclasses

10Friday, November 16, 2007

Coffee And Tea Implementations

public class Coffee extends CaffeineBeverage {1

 public void brew() {2

 System.out.println("Dripping Coffee through filter");3

 }4

 public void addCondiments() {5

 System.out.println("Adding Sugar and Milk");6

 }7

}8

9

public class Tea extends CaffeineBeverage {10

 public void brew() {11

 System.out.println("Steeping the tea");12

 }13

 public void addCondiments() {14

 System.out.println("Adding Lemon");15

 }16

}17

18

Nice and Simple!
11Friday, November 16, 2007

What have we done?

• Took two separate classes with separate but similar algorithms

• Noticed duplication and eliminated it by introducing a superclass

• Made steps of algorithm more abstract and specified its structure in the
superclass

• Thereby eliminating another “implicit” duplication between the two classes

• Revised subclasses to implement the abstract (unspecified) portions of the
algorithm… in a way that made sense for them

12Friday, November 16, 2007

Comparison: Template Method (TM) vs. No TM

• No Template Method

• Coffee and Tea each have own
copy of algorithm

• Code is duplicated across both
classes

• A change in the algorithm would
result in a change in both classes

• Not easy to add new caffeine
beverage

• Knowledge of algorithm distributed
over multiple classes

• Template Method

• CaffeineBeverage has the algorithm
and protects it

• CaffeineBeverage shares common
code with all subclasses

• A change in the algorithm likely
impacts only CaffeineBeverage

• New caffeine beverages can easily
be plugged in

• CaffeineBeverage centralizes
knowledge of the algorithm;
subclasses plug in missing pieces

13Friday, November 16, 2007

The Book’s Hook

• Previously I called the abstract methods that appear in a template method
“hook” methods

• The book refers to hook methods as well, but they make the following
distinction: a hook method is a concrete method that appears in the
AbstractClass that has an empty method body (or a mostly empty method
body, see example next slide), i.e.

• public void hook() {}

• Subclasses are free to override them but don’t have to since they provide
a method body, albeit an empty one

• In contrast, a subclass is forced to implement abstract methods that
appear in AbstractClass

• Hook methods, thus, should represent optional parts of the algorithm

14Friday, November 16, 2007

Adding a Hook to CaffeineBeverage

public abstract class CaffeineBeverageWithHook {1

 2

 void prepareRecipe() {3

 boilWater();4

 brew();5

 pourInCup();6

 if (customerWantsCondiments()) {7

 addCondiments();8

 }9

 }10

 11

 abstract void brew();12

 13

 abstract void addCondiments();14

 15

 void boilWater() {16

 System.out.println("Boiling water");17

 }18

 19

 void pourInCup() {20

 System.out.println("Pouring into cup");21

 }22

 23

 boolean customerWantsCondiments() {24

 return true;25

 }26

}27

28

prepareRecipe() altered to have a
hook method:
customerWantsCondiments()

This method provides a mostly
empty method body that subclasses
can override

To make the distinction between
hook and non-hook methods more
clear, you can add the “final”
keyword to all concrete methods
that you don’t want subclasses to
touch

15Friday, November 16, 2007

import java.io.*;1

2

public class CoffeeWithHook extends CaffeineBeverageWithHook {3

 4

 public void brew() {5

 System.out.println("Dripping Coffee through filter");6

 }7

 8

 public void addCondiments() {9

 System.out.println("Adding Sugar and Milk");10

 }11

 12

 public boolean customerWantsCondiments() {13

14

 String answer = getUserInput();15

16

 if (answer.toLowerCase().startsWith("y")) {17

 return true;18

 } else {19

 return false;20

 }21

 }22

 23

 private String getUserInput() {24

 String answer = null;25

26

 System.out.print("Would you like milk and sugar with your coffee (y/n)? ");27

28

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));29

 try {30

 answer = in.readLine();31

 } catch (IOException ioe) {32

 System.err.println("IO error trying to read your answer");33

 }34

 if (answer == null) {35

 return "no";36

 }37

 return answer;38

 }39

}40

41

Adding a
Hook to
Coffee

Demonstration

16Friday, November 16, 2007

New Design Principle: Hollywood Principle

• Don’t call us, we’ll call you

• Or, in OO terms, high-level components call low-level components, not the
other way around

• In the context of the template method pattern, the template method lives
in a high-level class and invokes methods that live in its subclasses

• This principle is similar to the dependency inversion principle we discussed
back in lecture 21 (Factory pattern): “Depend upon abstractions. Do not
depend upon concrete classes.”

• Template method encourages clients to interact with the abstract class
that defines template methods as much as possible; this discourages the
client from depending on the template method subclasses

17Friday, November 16, 2007

Template Methods in the Wild

• Template Method is used a lot since it’s a great design tool for creating
frameworks

• the framework specifies how something should be done with a template
method

• that method invokes abstract and hook methods that allow client-specific
subclasses to “hook into” the framework and take advantage of/influence
its services

• Examples in the Java API

• Sorting using compareTo() method

• Frames in Swing

• Applets

• Demonstration

18Friday, November 16, 2007

Template Method vs. Strategy (I)

• Both Template Method and Strategy deal with the encapsulation of algorithms

• Template Method focuses encapsulation on the steps of the algorithm

• Strategy focuses on encapsulating entire algorithms

• You can use both patterns at the same time if you want

• Strategy Structure

performOperation()
setAlgorithm(a: Algorithm)

Client

operation()
Algorithm

ConcreteAlgorithm1

strategy

ConcreteAlgorithmN...

strategy.operation()

19Friday, November 16, 2007

Template Method vs. Strategy (II)

• Template Method encapsulate the details of algorithms using inheritance

• Factory Method can now be seen as a specialization of the Template
Method pattern

• In contrast, Strategy does a similar thing but uses composition/delegation

Product

ConcreteProduct

factoryMethod(): Product
operation()

Creator

factoryMethod(): ConcreteProduct
ConcreteCreator

20Friday, November 16, 2007

Template Method vs. Strategy (III)

• Because it uses inheritance, Template Method offers code reuse benefits not
typically seen with the Strategy pattern

• On the other hand, Strategy provides run-time flexibility because of its use of
composition/delegation

• You can switch to an entirely different algorithm when using Strategy,
something that you can’t do when using Template Method

21Friday, November 16, 2007

Coming Up Next

• Lecture 25: Iterator and Composite

• Read Chapter 9 of the Design Patterns Textbook

• Lecture 26: State and Proxy

• Read Chapters 10 and 11 of the Design Patterns Textbook

22Friday, November 16, 2007

