
Factory Pattern

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 21 — 11/06/2007

© University of Colorado, 2007

1

Lecture Goals

• Cover Material from Chapters 4 of the Design Patterns Textbook

• Factory Pattern

• Abstract Factory Pattern

2

The Problem With “New”

• Each time we invoke the “new” command to create a new object, we violate
the “Code to an Interface” design principle

• Example

• Duck duck = new DecoyDuck()

• Even though our variable’s type is set to an “interface”, in this case “Duck”,
the class that contains this statement depends on “DecoyDuck”

• In addition, if you have code that checks a few variables and instantiates a
particular type of class based on the state of those variables, then the
containing class depends on each referenced concrete class

if (hunting) {

 return new DecoyDuck()

} else {

 return new RubberDuck();

}

Obvious Problems:
 needs to be recompiled each time a dep. changes
 add new classes, change this code
 remove existing classes, change this code

This means that this code violates the open-closed principle
and the “encapsulate what varies” design principle

3

PizzaStore Example

• We have a pizza store program that wants to separate the process of creating
a pizza with the process of preparing/ordering a pizza

• Initial Code: mixed the two processes

public class PizzaStore {1

2

 Pizza orderPizza(String type) {3

 4

 Pizza pizza;5

 6

 if (type.equals("cheese")) {7

 pizza = new CheesePizza();8

 } else if (type.equals("greek")) {9

 pizza = new GreekPizza();10

 } else if (type.equals("pepperoni")) {11

 pizza = new PepperoniPizza();12

 }13

 14

 pizza.prepare();15

 pizza.bake();16

 pizza.cut();17

 pizza.box();18

 19

 return pizza;20

 }21

 22

}23

24

Creation

Preparation

Note: excellent example of “coding to an interface”

Creation code has all the
same problems as the

code on the previous slide

4

Encapsulate Creation Code

• A simple way to encapsulate this code is to put it in a separate class

• That new class depends on the concrete classes, but those dependencies
no longer impact the preparation code

public class PizzaStore {1

2

 private SimplePizzaFactory factory;3

4

 public PizzaStore(SimplePizzaFactory factory) {5

 this.factory = factory;6

 }7

8

 public Pizza orderPizza(String type) {9

 10

 Pizza pizza = factory.createPizza(type);11

 12

 pizza.prepare();13

 pizza.bake();14

 pizza.cut();15

 pizza.box();16

 17

 return pizza;18

 }19

 20

}21

22

public class SimplePizzaFactory {1

2

 public Pizza createPizza(String type) {3

 if (type.equals("cheese")) {4

 return new CheesePizza();5

 } else if (type.equals("greek")) {6

 return new GreekPizza();7

 } else if (type.equals("pepperoni")) {8

 return new PepperoniPizza();9

 }10

 }11

12

}13

14

5

Class Diagram of New Solution

orderPizza():
Pizza

PIzzaStore

createPizza(): Pizza
SimplePizzaFactory

prepare()
bake()
cut()
box()

Pizza

CheesePizza VeggiePizza PepperoniPizza

factoryClient

Products

Factory

While this is nice, its not as flexible as it can be: to increase flexibility we
need to look at two design patterns: Factory Method and Abstract Factory

6

Factory Method

• To demonstrate the factory method pattern, the pizza store example evolves

• to include the notion of different franchises

• that exist in different parts of the country (California, New York, Chicago)

• Each franchise will need its own factory to create pizzas that match the
proclivities of the locals

• However, we want to retain the preparation process that has made
PizzaStore such a great success

• The Factory Method Design Pattern allows you to do this by

• placing abstract, “code to an interface” code in a superclass

• placing object creation code in a subclass

• PizzaStore becomes an abstract class with an abstract createPizza() method

• We then create subclasses that override createPizza() for each region

7

New PizzaStore Class

public abstract class PizzaStore {1

2

 protected abstract createPizza(String type);3

4

 public Pizza orderPizza(String type) {5

 6

 Pizza pizza = createPizza(type);7

 8

 pizza.prepare();9

 pizza.bake();10

 pizza.cut();11

 pizza.box();12

 13

 return pizza;14

 }15

16

}17

18

Factory Method

Beautiful Abstract Base Class!

This class is a (very simple) OO
framework. The framework provides
one service “prepare pizza”.

The framework invokes the
createPizza() factory method to create
a pizza that it can prepare using a well-
defined, consistent process.

A “client” of the framework will
subclass this class and provide an
implementation of the createPizza()
method.

Any dependencies on concrete
“product” classes are encapsulated in
the subclass.

8

New York Pizza Store

public class NYPizzaStore extends PizzaStore {1

 public Pizza createPizza(String type) {2

 if (type.equals("cheese")) {3

 return new NYCheesePizza();4

 } else if (type.equals("greek")) {5

 return new NYGreekPizza();6

 } else if (type.equals("pepperoni")) {7

 return new NYPepperoniPizza();8

 }9

 return null;10

 }11

}12

13

Nice and Simple. If you want a NY-Style Pizza, you create an instance of
this class and call orderPizza() passing in the type. The subclass makes
sure that the pizza is created using the correct style.

If you need a different style, create a new subclass.

9

Factory Method: Definition and Structure

• The factory method design pattern defines an interface for creating an object,
but lets subclasses decide which class to instantiate. Factory Method lets a
class defer instantiation to subclasses

Product

ConcreteProduct

factoryMethod(): Product
operation()

Creator

factoryMethod(): ConcreteProduct
ConcreteCreator

Factory Method leads to the creation of parallel class hierarchies;
ConcreteCreators produce instances of ConcreteProducts that
are operated on by Creator’s via the Product interface

10

Dependency Inversion Principle

• Factory Method is one way of following the dependency inversion principle

• “Depend upon abstractions. Do not depend upon concrete classes.”

• Normally “high-level” classes depend on “low-level” classes;

• Instead, they BOTH should depend on an abstract interface

• DependentPizzaStore depends on eight concrete Pizza subclasses

• PizzaStore, however, depends on the Pizza interface

• as do the Pizza subclasses

• In this design, PizzaStore (the high-level class) no longer depends on the
Pizza subclasses (the low level classes); they both depend on the abstraction
“Pizza”. Nice.

11

Dependency Inversion Principle: How To?

• To achieve the dependency inversion principle in your own designs, follow
these GUIDELINES

• No variable should hold a reference to a concrete class

• No class should derive from a concrete class

• No method should override an implemented method of its base classes

• These are guidelines because if you were to blindly follow these instructions,
you would never produce a system that could be compiled or executed

• Instead use them as instructions to help optimize your design

• And remember, not only should low-level classes depend on abstractions, but
high-level classes should to… this is the very embodiment of “code to an
interface”

12

Demonstration

• Lets look at some code

• The FactoryMethod directory of this lecture’s src.zip file contains an
implementation of the pizza store using the factory method design pattern

• It even includes a file called “DependentPizzaStore.java” that shows
how the code would be implemented without using this pattern

• DependentPizzaStore is dependent on 8 different concrete classes and 1
abstract interface (Pizza)

• PizzaStore is dependent on just the Pizza abstract interface (nice!)

• Each of its subclasses is only dependent on 4 concrete classes

• furthermore, they shield the superclass from these dependencies

13

Moving On

• The factory method approach to the pizza store is a big success allowing our
company to create multiple franchises across the country quickly and easily

• But, bad news, we have learned that some of the franchises

• while following our procedures (the abstract code in PizzaStore forces
them to)

• are skimping on ingredients in order to lower costs and increase
margins

• Our company’s success has always been dependent on the use of fresh,
quality ingredients

• so “Something Must Be Done!” ®

14

Abstract Factory to the Rescue!

• We will alter our design such that a factory is used to supply the ingredients
that are needed during the pizza creation process

• Since different regions use different types of ingredients, we’ll create
region-specific subclasses of the ingredient factory to ensure that the right
ingredients are used

• But, even with region-specific requirements, since we are supplying the
factories, we’ll make sure that ingredients that meet our quality standards
are used by all franchises

• They’ll have to come up with some other way to lower costs. ☺

15

First, We need a Factory Interface

public interface PizzaIngredientFactory {1

 2

 public Dough createDough();3

 public Sauce createSauce();4

 public Cheese createCheese();5

 public Veggies[] createVeggies();6

 public Pepperoni createPepperoni();7

 public Clams createClam();8

 9

}10

11

Note the introduction of more abstract classes:
Dough, Sauce, Cheese, etc.

16

Second, We implement a Region-Specific Factory

public class ChicagoPizzaIngredientFactory 1

 implements PizzaIngredientFactory 2

{3

4

 public Dough createDough() {5

 return new ThickCrustDough();6

 }7

8

 public Sauce createSauce() {9

 return new PlumTomatoSauce();10

 }11

12

 public Cheese createCheese() {13

 return new MozzarellaCheese();14

 }15

16

 public Veggies[] createVeggies() {17

 Veggies veggies[] = { new BlackOlives(), 18

 new Spinach(), 19

 new Eggplant() };20

 return veggies;21

 }22

23

 public Pepperoni createPepperoni() {24

 return new SlicedPepperoni();25

 }26

27

 public Clams createClam() {28

 return new FrozenClams();29

 }30

}31

32

This factory ensures that
quality ingredients are used
during the pizza creation
process…

… while also taking into
account the tastes of people
who live in Chicago

But how (or where) is this
factory used?

17

Within Pizza Subclasses… (I)

public abstract class Pizza {1

 String name;2

3

 Dough dough;4

 Sauce sauce;5

 Veggies veggies[];6

 Cheese cheese;7

 Pepperoni pepperoni;8

 Clams clam;9

10

 abstract void prepare();11

12

 void bake() {13

 System.out.println("Bake for 25 minutes at 350");14

 }15

16

 void cut() {17

 System.out.println("Cutting the pizza into diagonal slices");18

 }19

20

 void box() {21

 System.out.println("Place pizza in official PizzaStore box");22

 }23

24

 void setName(String name) {25

 this.name = name;26

 }27

28

 String getName() {29

 return name;30

 }31

32

 public String toString() {33

 StringBuffer result = new StringBuffer();34

 result.append("---- " + name + " ----\n");35

 if (dough != null) {36

 result.append(dough);37

 result.append("\n");38

 }39

 if (sauce != null) {40

 result.append(sauce);41

 result.append("\n");42

 }43

 if (cheese != null) {44

 result.append(cheese);45

 result.append("\n");46

 }47

 if (veggies != null) {48

 for (int i = 0; i < veggies.length; i++) {49

 result.append(veggies[i]);50

 if (i < veggies.length-1) {51

 result.append(", ");52

 }53

 }54

 result.append("\n");55

 }56

 if (clam != null) {57

 result.append(clam);58

 result.append("\n");59

 }60

First, alter the Pizza abstract base class to make the
prepare method abstract…

18

Within Pizza Subclasses… (II)

public class CheesePizza extends Pizza {1

 PizzaIngredientFactory ingredientFactory;2

 3

 public CheesePizza(PizzaIngredientFactory ingredientFactory) {4

 this.ingredientFactory = ingredientFactory;5

 }6

 7

 void prepare() {8

 System.out.println("Preparing " + name);9

 dough = ingredientFactory.createDough();10

 sauce = ingredientFactory.createSauce();11

 cheese = ingredientFactory.createCheese();12

 }13

}14

15

Then, update Pizza subclasses to make use of the factory! Note: we no
longer need subclasses like NYCheesePizza and ChicagoCheesePizza
because the ingredient factory now handles regional differences

19

One last step…

public class ChicagoPizzaStore extends PizzaStore {1

2

 protected Pizza createPizza(String item) {3

 Pizza pizza = null;4

 PizzaIngredientFactory ingredientFactory =5

 new ChicagoPizzaIngredientFactory();6

7

 if (item.equals("cheese")) {8

9

 pizza = new CheesePizza(ingredientFactory);10

 pizza.setName("Chicago Style Cheese Pizza");11

12

 } else if (item.equals("veggie")) {13

14

 pizza = new VeggiePizza(ingredientFactory);15

 pizza.setName("Chicago Style Veggie Pizza");16

17

 } else if (item.equals("clam")) {18

19

 pizza = new ClamPizza(ingredientFactory);20

 pizza.setName("Chicago Style Clam Pizza");21

22

 } else if (item.equals("pepperoni")) {23

24

 pizza = new PepperoniPizza(ingredientFactory);25

 pizza.setName("Chicago Style Pepperoni Pizza");26

27

 }28

 return pizza;29

 }30

}31

32

…

We need to update our PizzaStore subclasses to create the appropriate
ingredient factory and pass it to each Pizza subclass in the createPizza
factory method.

20

Summary: What did we just do?

1. We created an ingredient factory interface to allow for the creation of a family
of ingredients for a particular pizza

2. This abstract factory gives us an interface for creating a family of products

2.1.The factory interface decouples the client code from the actual factory
implementations that produce context-specific sets of products

3. Our client code (PizzaStore) can then pick the factory appropriate to its
region, plug it in, and get the correct style of pizza (Factory Method) with the
correct set of ingredients (Abstract Factory)

21

Demonstration

• Examine and execute the code located in the Abstract Factory directory of
the src.zip file associated with this lecture

22

Abstract Factory: Definition and Structure

• The abstract factory design pattern provides an interface for creating families
of related or dependent objects without specifying their concrete classes

Client
createProductA(): AbstractProductA

createProductB(): AbstractProductB

AbstractFactory
«Interface»

createProductA(): ProductA1

createProductB(): ProductB1

ConcreteFactoryA
createProductA(): ProductA2

createProductB(): ProductB2

ConcreteFactoryB

AbstractProductA
«Interface»

AbstractProductB
«Interface»

ProductA1 ProductA2 ProductB1 ProductB2

factory

23

Wrapping Up

• All factories encapsulate object creation

• Simple Factory is not a bona fide design pattern but it is simple to
understand and implement

• Factory Method relies on inheritance: object creation occurs in subclasses

• Abstract Factory relies on composition: object creation occurs in concrete
factories

• Both can be used to shield your applications from concrete classes

• And both can aide you in applying the dependency inversion principle in
your designs

24

Coming Up Next

• Lecture 22: Singleton and Command Patterns

• Read Chapters 5 and 6 of the Design Patterns Textbook

• Lecture 23: Adapters and Template Methods

• Read Chapters 7 and 8 of the Design Patterns Textbook

25

