
Observer and Decorator

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 20 — 11/01/2007

© University of Colorado, 2007

1Thursday, November 1, 2007

Lecture Goals

• Cover Material from Chapters 2 and 3 of the Design Patterns Textbook

• Observer Pattern

• Decorator Pattern

2Thursday, November 1, 2007

Observer Pattern

• Don’t miss out when something interesting (in your system) happens!

• The observer pattern allows objects to keep other objects informed about
events occurring within a software system (or across multiple systems)

• Its dynamic in that an object can choose to receive notifications or not at
run-time

• Observer happens to be one of the most heavily used patterns in the Java
Development Kit

3Thursday, November 1, 2007

Chapter Example: Weather Monitoring

Weather
Station

Temp
Sensor

Humidity
Sensor

Pressure
Sensor

Weather
Data

Object

TabTabTab

Document Window

pull
data

display
data

provided what we implement

We need to pull information from the station and then generate
“current conditions, weather stats, and a weather forecast”.

4Thursday, November 1, 2007

WeatherData Skeleton

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

WeatherData We receive a partial implementation of the
WeatherData class from our client.

They provide three getter methods for the
sensor values and an empty
measurementsChanged() method that is
guaranteed to be called whenever a
sensor provides a new value

We need to pass these values to our
three displays… so that’s simple!

5Thursday, November 1, 2007

First pass at measurementsChanged

...1

2

public void measurementsChanged() {3

4

 float temp = getTemperature();5

 float humidity = getHumidity();6

 float pressure = getPressure();7

 8

 currentConditionsDisplay.update(temp, humidity, pressure);9

 statisticsDisplay.update(temp, humidity, pressure);10

 forecastDisplay.update(temp, humidity, pressure);11

12

}13

14

...15

16

Problems?

1. The number and type of displays may vary.
These three displays are hard coded with no easy way
to update them.
2. Coding to implementations, not an interface!
Although each implementation has adopted the same
interface, so this will make translation easy!

6Thursday, November 1, 2007

Observer Pattern

• This situation can benefit from use of the observer pattern

• This pattern is similar to subscribing to a hard copy newspaper

• A newspaper comes into existence and starts publishing editions

• You become interested in the newspaper and subscribe to it

• Any time an edition becomes available, you are notified (by the fact that
it is delivered to you)

• When you don’t want the paper anymore, you unsubscribe

• The newspaper’s current set of subscribers can change at any time

• Observer is just like this but we call the publisher the “subject” and we
refer to subscribers as “observers”

7Thursday, November 1, 2007

Observer in Action (I)

Observers

Subject

Observer
1

Observer
2

Observer
3

Subject maintains a list of observers

8Thursday, November 1, 2007

Observer in Action (II)

Observers

Subject

Observer
1

Observer
2

Observer
3

If the Subject changes, it notifies its observers

9Thursday, November 1, 2007

Observer in Action (III)

Observers

Subject

Observer
1

Observer
2

Observer
3

If needed, an observer may query its subject for more information
10Thursday, November 1, 2007

Observer In Action (IV)

Observers

Subject

Observer
1

Observer
2

Observer
3

At any point, an observer may join or leave the set of observers

Observer
4

11Thursday, November 1, 2007

Observer Definition and Structure

• The Observer Pattern defines a one-to-many dependency between a set of
objects, such that when one object (the subject) changes all of its dependents
(observers) are notified and updated automatically

registerObserver()
removeObserver()
notifyObservers()

Subject
«Interface»

update()

Observer
«Interface»

observers

*

getState()
setState()

state
ConcreteSubject

Observer
subject

12Thursday, November 1, 2007

Observer Benefits

• Observer affords a loosely coupled interaction between subject and observer

• This means they can interact with very little knowledge about each other

• Consider

• The subject only knows that observers implement the Observer interface

• We can add/remove observers of any type at any time

• We never have to modify subject to add a new type of observer

• We can reuse subjects and observers in other contexts

• The interfaces plug-and-play where ever observer is used

• Observers may have to know about the ConcreteSubject class if it
provides many different state-related methods

• Otherwise, data can be passed to observers via the update() method

13Thursday, November 1, 2007

Demonstration

• Roll Your Own Observer

• Using java.util.Observable and java.util.Observable

• Observable is a CLASS, a subject has to subclass it to manage observers

• Observer is an interface with one defined method: update(subject, data)

• To notify observers: call setChanged(), then notifyObservers(data)

• Observer in Swing

• Listener framework is just another name for the Observer pattern

14Thursday, November 1, 2007

Decorator Pattern

• The Decorator Pattern provides a powerful mechanism for adding new
behaviors to an object at run-time

• The mechanism is based on the notion of “wrapping” which is just a fancy
way of saying “delegation” but with the added twist that the delegator and
the delegate both implement the same interface

• You start with object A that implements abstract type X

• You then create object B that also implements abstract type X

• You pass A into B’s constructor and then pass B to A’s client

• The client thinks its talking to A but its actually talking to B

• B’s methods augment A’s methods to provide new behavior

15Thursday, November 1, 2007

Why? Open-Closed Principle

• The decorator pattern provides yet another way in which a class’s runtime
behavior can be extended without requiring modification to the class

• This supports the goal of the open-closed principle:

• Classes should be open for extension but closed to modification

• Inheritance is one way to do this, but composition and delegation are
more flexible (and Decorator takes advantage of delegation)

• Chapter 3’s “Starbuzz Coffee” example clearly demonstrates why inheritance
can get you into trouble and why delegation/composition provides greater
run-time flexibility

16Thursday, November 1, 2007

Starbuzz Coffee

• Under pressure to update their “point of sale” system to keep up with their
expanding set of beverage products

• Started with a Beverage abstract base class and four implementations:
HouseBlend, DarkRoast, Decaf, and Espresso

• Each beverage can provide a description and compute its cost

• But they also offer a range of condiments including: steamed milk, soy,
and mocha

• These condiments alter a beverage’s description and cost

• “Alter” is a key word here since it provides a hint that we might be
able to use the Decorator pattern

17Thursday, November 1, 2007

Initial Starbuzz System

getDescription()
cost()

description

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

With inheritance on your brain, you may add condiments to this design in
one of two ways

1. One subclass per combination of condiment (wont work in general but especially not in Boulder!)
2. Add condiment handling to the Beverage superclass

18Thursday, November 1, 2007

One Subclass per Combination

getDescription()
cost()

description

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

cost()
HouseBlendWithSteamedMilkandMocha

cost()
HouseBlendWithSoyandMocha

cost()
EspressoWithSoyAndMocha

cost()
DecafWithWhipandSoy

This is incomplete, but you can see the problem…
(see page 81 for a more complete picture)

19Thursday, November 1, 2007

Let Beverage Handle Condiments

getDescription()
hasMilk()
setMilk()
hasSoy()
...
cost()

description
milk
soy
mocha
whip

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

Houston, we have a problem…

1. This assumes that all concrete Beverage classes need these condiments
2. Condiments may vary (old ones go, new ones are added, price changes,
etc.), shouldn’t they be encapsulated some how?
3. How do you handle “double soy” drinks with boolean variables?

20Thursday, November 1, 2007

Decorator Pattern: Definition and Structure

methodA()

methodB()

Component

methodA()

methodB()

...

att1

att2

ConcreteComponent
methodA()

methodB()

Decorator

methodA()

methodB()

...

ConcreteDecoratorA

methodA()

methodB()

...

newatt1

newatt2

ConcreteDecoratorB

component Inheritance is used to make
sure that components and
decorators share the same
interface: namely the public
interface of Component
which is either an abstract
class or an interface

At run-time, concrete
decorators wrap
concrete components
and/or other concrete
decorators

The object to be
wrapped is typically
passed in via the
constructor

21Thursday, November 1, 2007

Client Perspective

Concrete
DecoratorB

Concrete
DecoratorA

Client
Concrete

Component

foo()

Concrete
Component

Client

foo() foo()

foo()

BEFORE

AFTER

In both situations,
Client thinks its talking to
a Component. It shouldn’t
know about the concrete
subclasses. Why?

22Thursday, November 1, 2007

StarBuzz Using Decorators (Incomplete)

getDescription()
cost()

Beverage

cost()
HouseBlend

getDescription()
cost()

CondimentDecorator

getDescription()
cost()

Milk
getDescription()
cost()

Soy

beverage

23Thursday, November 1, 2007

Demonstration

• Starbuzz Example

• Use of Decorator Pattern in java.io package

• InputStream == Component

• FilterInputStream == Decorator

• FileInputStream, StringBufferInputStream, etc. == ConcreteComponent

• BufferedInputStream, LineNumberInputStream, etc. == ConcreteDecorator

24Thursday, November 1, 2007

Wrapping Up

• Observer

• Loosely coupled state change notifications

• between a subject and a dynamically changing set of observers

• Decorator

• Way to implement open-closed principle that

• makes use of inheritance to share an interface between a set of
components and a set of decorators

• makes use of composition and delegation to dynamically wrap
decorators around components at run-time

25Thursday, November 1, 2007

Coming Up Next

• Lecture 21: Factory Pattern

• Read Chapter 4 of the Design Patterns Textbook

• Lecture 22: Singleton and Command Patterns

• Read Chapters 5 and 6 of the Design Patterns Textbook

26Thursday, November 1, 2007

