
Lecture 16: Object-Oriented Design Methods

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 16 — 10/18/2007

© University of Colorado, 2007

1Tuesday, October 23, 2007



Goals for this Lecture

• Review various OO design methods (software development life cycles)

• Briefly review two additional UML diagrams

• Activity Diagrams

• State Diagrams

2Tuesday, October 23, 2007



Background

• In Software Engineering:

• “Process is King”

• We want our activities to be coordinated and planned, e.g. “engineered”

3Tuesday, October 23, 2007



Life Cycle Characteristics

• Life cycles make software development

• predictable

• repeatable

• measurable

• efficient

• High-quality processes should lead to high-quality products

• at least it improves the odds of producing good software

4Tuesday, October 23, 2007



Survey of OOA&D Methods

• Generalization

• Taken from “SE: A Practitioner’s approach, 4th ed.” by Roger S. Pressman, 
McGraw-Hill, 1997

• The Booch Method

• The Jacobson Method

• The Rambaugh Method

• The Unified Software Process

5Tuesday, October 23, 2007



OO Methods in General...

• Obtain customer requirements for the OO System

• Identify scenarios or use cases

• Build a requirements model

• Select classes and objects using basic requirements

• Identify attributes and operations for each object

• Define structures and hierarchies that organize classes

• Build an object-relationship model

• Build an object-behavior model

• Review the OO analysis model against use cases

• Once complete, move to design and implementation: These phases simply 
elaborate the previously created models with more and more detail, until it 
is possible to write code straight from the models

6Tuesday, October 23, 2007



Detailed comparisons

• What follows is a barebones description of each method, detailed 
comparisons can be found in:

• Graham, I. Object-Oriented Methods, Addison-Wesley, Third Edition, 2001

7Tuesday, October 23, 2007



Background on OO Methods

• An OO Method should cover and include

• requirements and business process modeling

• a lightweight, customizable process framework

• project management

• component architecture

• system specification

• use cases, UML, architecture, etc.

• component design and decomposition

• testing throughout the life cycle

• Software quality assurance

• Configuration management

8Tuesday, October 23, 2007



The Booch Method

• Identify classes and objects

• Propose candidate objects

• Conduct behavior analysis

• Identify relevant scenarios

• Define attributes and operations for each class

• Identify the semantics of classes and objects

• Select scenarios and analyze

• Assign responsibility to achieve desired behavior

• Partition responsibilities to balance behavior

• Select an object and enumerate its roles and responsibilities

• Define operations to satisfy the responsibilities

9Tuesday, October 23, 2007



Booch, continued

• Identify relationships among classes and objects

• Define dependencies that exist between objects

• Describe the role of each participating object

• Validate by walking through scenarios

• Conduct a series of refinements

• Produce appropriate diagrams for the work conducted above

• Define class hierarchies as appropriate

• Perform clustering based on class commonality

• Implement classes and objects

• In analysis and design, this means specify everything!

10Tuesday, October 23, 2007



The Jacobson Method

• Object-Oriented Software Engineering

• Primarily distinguished by the use-case

• Simplified model of Objectory

• Objectory evolved into the Rational Unified Software Development 
Process

• For more information on this Objectory precursor, see

• Jacobson, I., Object-Oriented Software Engineering, Addison-Wesley, 
1992.

11Tuesday, October 23, 2007



Jacobson, continued

• Identify the users of the system and their overall responsibilities

• Build a requirements model

• Define the actors and their responsibilities

• Identify use cases for each actor

• Prepare initial view of system objects and relationships

• Review model using use cases as scenarios to determine validity

• Continued on next slide

12Tuesday, October 23, 2007



Jacobson, continued

• Build analysis model

• Identify interface objects using actor-interaction information

• Create structural views of interface objects

• Represent object behavior

• Isolate subsystems and models for each

• Review the model using use cases as scenarios to determine validity

13Tuesday, October 23, 2007



The Rumbaugh Method

• Object Modeling Technique (OMT)

• Rumbaugh, J. et al., Object-Oriented Modeling and Design, Prentice-Hall, 
1991

• Analysis activity creates three models

• Object model

• Objects, classes, hierarchies, and relationships

• Dynamic model

• object and system behavior

• Functional model

• High-level Data-Flow Diagram

14Tuesday, October 23, 2007



Rumbaugh, continued

• Develop a statement of scope for the problem

• Build an object model

• Identify classes that are relevant for the problem

• Define attributes and associations

• Define object links

• Organize object classes using inheritance

• Develop a dynamic model

• Prepare scenarios

• Define events and develop an event trace for each scenario

• Construct an event flow diagram and a state diagram

• Review behavior for consistency and completeness

15Tuesday, October 23, 2007



Rumbaugh, continued

• Construct a functional model for the system

• Identify inputs and outputs

• Use data flow diagrams to represent flow transformations

• Develop a processing specification for each process in the DFD

• Specify constraints and optimization criteria

• Iterate

16Tuesday, October 23, 2007



Rational Unified Process: Overview

PHASES 

PRODUCT 
CYCLES 

CORE 
WORKFLOWS 

CYCLE 1 CYCLE 2 CYCLE 3 . . . CYCLE N 

INCEPTION ELABORATION CONSTRUCTION TRANSITION 

iteration 
1 

iteration 
2 

iteration 
3 

iteration 
4 

iteration 
5 

iteration 
6 . . . iteration 

n - 1 
iteration 

n 

Requirements Analysis Design Implementation Test 

ITERATIONS 

17Tuesday, October 23, 2007



Inception

• High-level planning for the project

• Determine the project’s scope

• If necessary

• Determine business case for the project

• Estimate cost and projected revenue

18Tuesday, October 23, 2007



Elaboration

• Develop requirements and initial design

• Develop Plan for Construction phase

• Risk-driven approach

• Requirements Risks

• Technological Risks

• Skills Risks

• Political Risks

19Tuesday, October 23, 2007



Requirements Risks

• Is the project technically feasible?

• Is the budget sufficient?

• Is the timeline sufficient?

• Has the user really specified the desired system?

• Do the developers understand the domain well enough?

20Tuesday, October 23, 2007



Dealing with Requirements Risks

• Construct models to record Domain and/or Design knowledge

• Domain model (vocabulary)

• Use Cases

• Design model

• Class diagrams

• Activity diagrams

• Prototype construction

21Tuesday, October 23, 2007



Dealing with Requirements Risks

• Begin by learning about the domain

• Record and define jargon

• Talk with domain experts and end-users

• Next construct use cases

• What are the required external functions of the system?

• Iterative process; Use Cases can be added as they are discovered

22Tuesday, October 23, 2007



Dealing with Requirements Risks

• Finally, construct design model

• Class diagrams identify key domain concepts and their high-level 
relationships

• Activity diagrams highlight the domain’s work practices

• A major task here is identifying parallelism that can be exploited later

• Be sure to consolidate iterations into a final consistent model

23Tuesday, October 23, 2007



Dealing with Requirements Risks

• Build prototypes

• Used only to help understand requirements

• Throw them all out!

• Do not be tied to an implementation too early

• Make use of rapid prototyping tools

• 4th Generation Programming Languages

• Scripting and/or Interpreted environments

• UI Builders

• Be prepared to educate the client as to the purpose of the prototype

24Tuesday, October 23, 2007



Technology Risks

• Are you tied to a particular technology?

• Do you “own” that technology?

• Do you understand how different technologies interact?

• Techniques

• Prototypes

• Class diagrams, package diagrams

• “Scouting” — evaluate technology early

25Tuesday, October 23, 2007



Skill Risks

• Do the members of the project team have the necessary skills and 
background to tackle the project?

• If not your options are

• Training

• Consulting

• Mentoring

• Hiring new people

26Tuesday, October 23, 2007



Political Risks

• How well does the proposed project mesh with corporate culture?

• Consider the attempt to use Lotus Notes at Arthur Anderson

• Lotus Notes attempts to promote collaboration

• Arthur Anderson consultants compete with each other!

• Consider e-mail: any employee can ignore the org chart and mail the CEO!

27Tuesday, October 23, 2007



Political Risks, continued

• Will the project directly compete with another business unit?

• Will it be at odds with some higher level manager’s business plan?

• Any of these can kill a project…

• Examples from students?

28Tuesday, October 23, 2007



Reference

• Lotus Notes vs. Arthur Anderson

• Orlikowski, W. J. (1992). "Learning from Notes: Organizational Issues in 
Groupware Implementation". Proceedings of ACM CSCW'92 Conference 
on Computer-Supported Cooperative Work: 362-369.

• If you are interested you can borrow my copy of the CSCW’92 proceedings to 
make a copy

29Tuesday, October 23, 2007



Ending Elaboration

• Baseline architecture constructed

• List of Use Cases (with estimates)

• Domain Model

• Technology Platform

• AND

• Risks identified

• Plan constructed

• Use cases assigned to iterations

30Tuesday, October 23, 2007



Construction

• Each iteration produces a software product that implements the assigned Use 
cases

• Additional analysis and design may be necessary as the implementation 
details get addressed for the first time

• Extensive testing should be performed and the product should be released to 
(some subset of) the client for early feedback

31Tuesday, October 23, 2007



Transition

• Final phase before release 1.0

• Optimizations can now be performed

• Optimizing too early may result in the wrong part of the system being 
optimized

• Largest boosts in performance come from replacing non-scalable 
algorithms or mitigating bottlenecks

32Tuesday, October 23, 2007



Summary

• All OO Design Methods share a similar structure

• The design method described in our textbook

• is compatible with the methods discussed in this lecture

• is lighter weight, allowing you to get to code more quickly

• The important point is to use a process that has you switching between A&D 
activities and coding in a fairly regular fashion

• This helps you shift your perspective from “internal” to “external” and 
allows you to keep in mind your ultimate goal:

• delivering a system that meets your customer’s needs

33Tuesday, October 23, 2007



Two New UML Diagrams

• Activity Diagrams and State Diagrams

• Relationship to life cycles

• They represent alternate ways to record/capture design information about 
your system. They can help you identify new classes and methods that

• They are typically used in the following places in analysis and design

• After use case creation: create an activity diagram for the use case

• For each activity in the diagram: draw a sequence diagram

• Add a class for each object in the sequence diagrams to your class 
diagram, add methods in sequence diagrams to relevant classes

• Based on this information, see if you can partition an object’s behavior 
into various categories (initializing, acquiring info, performing calcs, …)

• Create a state diagram for the object that documents these states and 
the transitions between them (transitions typically map to method calls)

34Tuesday, October 23, 2007



Activity Diagrams

• Think “Flow Chart on Steroids”

• Able to model complex, parallel processes with multiple ending conditions

• Constructs

• Initial Node (circle)/Final Node (circle in circle)/Early Termination Node 
(circle with x through it)

• Activity: Rounded Rectangle indication an action of some sort either by a 
system or by a user

• Flow: directed lines between activities and/or other constructs. Flows can 
be annotated with guards “[student on list]” that restrict its use

• Fork/Join: Black bars that indicate activities that happen in parallel

• Decision/Merge: Diamonds used to indicate conditional logic.

• Swim Lanes: A way to layout the diagram to associate roles with activities

35Tuesday, October 23, 2007



Example Activity Diagram

Example adapted from <http://www.agilemodeling.com/artifacts/activityDiagram.htm>. Copyright © 2003-2006 Scott W. Ambler 

Fill Out Forms Inspect Forms

[problem found]

Display 
Enrollment Screen

[no problem found]

Enter Applicant 
Information

Validate Student

Search for
Student Record

Need to Apply

[not a student]

Display
Matches

Create
Student Record

[matches
found]

[no
matches]

[on list]

[not on
list]

[is a
student]

Enroll Student

Calculate Fees

Process 
Payment

36Tuesday, October 23, 2007

http://www.agilemodeling.com/artifacts/activityDiagram.htm
http://www.agilemodeling.com/artifacts/activityDiagram.htm


State Diagrams

• Shows the major states of an object or system

• Each state appears as a rounded rectangle

• Arrows indicate state transitions

• Each transition has a name that indicates what triggers the transition 
(often times, this name corresponds to a method name)

• Each transition may optionally have a guard that indicates a condition 
that must be true before the transition can be followed

• A state diagram also has a start state and an end state

• State diagrams are useful if you have a class that has “partitions” in its 
behavior: it acts one way when it starts, another way when condition A 
occurs, another way when condition B occurs, and another way before it 
terminates

37Tuesday, October 23, 2007



Example State Diagram

Ready to 
Play

Player 1 
Movement

Player 2 
Movement

Player 1 
Combat

Player 2 
Combat

Victory
Check

select game
scenario

start
game

end
phase

end
phase

[player 2 to move]
end phase

[player 1 to move]
end phase

end
phase

end
phase

victory

[units able to move > 0]
make move

[units able to move > 0]
make move

[units able to fight > 0]
fight battle

[units able to fight > 0]
fight battle

38Tuesday, October 23, 2007



Wrapping Up

• We’ve finished the first half of the semester

• Reviewed basic OO concepts, terminology and notations

• Learned OO analysis and design techniques

• Learned OO principles

• Learned UML (class, sequence, activity, state, use case)

• Laid the foundation for OO design patterns

• Ended with a review of OO Design methods

• Second half of the semester

• Design patterns, refactoring, test-driven design, and more

39Tuesday, October 23, 2007


