
Bringing Order to Chaos

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 12 — 10/04/2007

© University of Colorado, 2007

1Friday, October 5, 2007

Lecture Goals

• Review material from Chapter 7 of the OO A&D textbook

• How do you use software architecture to guide the development process?

• The three Q’s of architecture

• Risk and how to reduce it

• Commonality Analysis

• Discuss the Chapter 7 Example: Gary’s Game Framework

• Emphasize the OO concepts and techniques encountered in Chapter 7

• Review Homework 1

2Friday, October 5, 2007

Bringing Order to Chaos

• At the start of a development project for a large, complex software system

• You don’t have a lot of information

• You don’t know a lot about your domain

• And yet…

• You are expected to make

• implementation decisions (concerning expensive pieces of middleware)

• decisions regarding non-functional requirements

• progress on decomposing the problem domain into manageable pieces

• progress on identifying the features of the system under design

3Friday, October 5, 2007

How Does One Start?

• Indeed after doing the work that we described in the last lecture…

• domain analysis

• talking to customer

• developing feature list

• developing use case diagram

• which requires hard work like identifying all of the different types of
users an their major tasks

• decomposing “big problem” into “smaller modules”

• You may be feeling overwhelmed with the information you have so far

• or have doubts about its accuracy (which then leads to paralysis)

• So, how does one identify what to do next?

4Friday, October 5, 2007

Answer: Software Architecture

• It’s not enough to identify the individual pieces of a big problem

• You also need to know how those pieces fit together

• You need to have a mechanism for prioritizing your work on those pieces

• The missing piece is the software architecture for your system

• A software architecture provides a structure to the design of a software
system, highlights the most important parts of your system, and the
relationships between those parts

• A second definition

• A software architecture is the organizational structure of a system,
including its decomposition into parts, their connectivity, interaction
mechanisms, and the guiding principles and decisions you use in the
design of a system

• An architecture can take a chaotic mess and turn it into a well-ordered app!

5Friday, October 5, 2007

Back to the Three Step Process

• Our three step OO A&D process

• Make sure your software does what the customer wants it to do

• Apply basic OO principles to add flexibility

• Strive for a maintainable, reusable design

• points the way towards what to do first: Focus on Functionality

• As such, we will start with what the customer wants to do

• And for large systems that means looking at the feature list

6Friday, October 5, 2007

The Feature List

Features for Gary’s Game System

1. Supports different time periods, including fictional periods
like sci-fi and fantasy
2. Supports add-on modules for additional campaigns or
battle scenarios
3. Supports different types of terrain
4. Supports multiple types of troops or units that are game-
specific
5. Each game has a board, made up of square tiles, each with
a terrian type.
6. The framework keeps up with whose turn it is an
coordinates basic movement

But now the question is which of these are the
most important?

7Friday, October 5, 2007

The Three Qs of Architecture

• We are trying to identify the important functionality of our system

• the features that are architecturally significant

• To identify important pieces of functionality, ask 3 questions of each feature

• Is the feature part of the essence of the system?

• The essence of a system is what that system is at its most basic level

• “If I don’t implement this feature, would the system meet its goals?”

• What does the feature mean?

• Not having a clear idea might indicate that the feature can take a lot of
time to get right; best to start on it early

• How will I implement the feature?

• Focus on features that seem really hard to implement so they don’t
bog you down later in the development cycle

8Friday, October 5, 2007

The Essence of Gary’s Game Framework

• After applying the 3 Qs of architecture, the book focuses on these features

• The board for the game (the essence)

• Game-Specific Units (the essence and what does this mean?)

• Framework coordinate basic movement (Can we implement this?)

• Having identified these features, we can now examine them in depth

• and this will serve to finally get the project moving… after these features
get fleshed out, it will be easier to move on to the remaining features/
modules and flesh them out as well

9Friday, October 5, 2007

Why are these features important? Risk

• The importance of the three Qs of architecture is that these questions help
you to identify the major risks associated with your development process

• The reason that the three features on the previous slide are architecturally
significant is that they all introduce RISK to your project (i.e. the risk that
the project will fail due to this particular feature/requirement)

• If we don’t know what some feature means, we have a risk of not
meeting schedules and deadlines as we perform a lot of work to
discover its meaning

• If a feature seems hard to implement, there is a risk we won’t figure it
out or it will take a really long time to accomplish

• If the core features are not in place, there’s a risk that the customer
won’t like the finished product

• The key task during this phase of transitioning from large, complex problems
to smaller, more manageable, problems is reducing risk

10Friday, October 5, 2007

Feature 1: The board

• We want to consider the design of the board

• an essential part of the framework

• Since we don’t have a lot of detail from the user, we can’t create a use case

• but we may have enough information to develop a single scenario

• recall that a single use case will have one or more paths (aka scenarios)

• A scenario for the board is developed

• create the board

• move player 1’s and player 2’s units such that a battle takes place

• take into consideration the terrain that they encounter

• perform the battle

• remove units that lost the battle from the board

11Friday, October 5, 2007

From Scenario to Code

public class Board {1

2

 private int width, height;3

 private List tiles;4

 5

 public Board(int width, int height) {6

 this.width = width;7

 this.height = height;8

 initialize();9

 }10

 11

 private void initialize() {12

 tiles = new ArrayList(width);13

 for (int i=0; i<width; i++) {14

 tiles.add(i, new ArrayList(height));15

 for (int j=0; j<height; j++) {16

 ((ArrayList)tiles.get(i)).add(j, new Tile());17

 }18

 }19

 }20

 21

 public Tile getTile(int x, int y) {22

 return (Tile)((ArrayList)tiles.get(x-1)).get(y-1);23

 }24

 25

 public void addUnit(Unit unit, int x, int y) {26

 getTile(x, y).addUnit(unit);27

 }28

 29

 public void removeUnit(Unit unit, int x, int y) {30

 getTile(x, y).removeUnit(unit);31

 }32

 33

 ...34

}35

36

Board is placed in a Java package called
board (not shown)

The creation of the board is moved out of
the constructor and into its own method

Place a Tile() at each coordinate and offer
a means for retrieving tiles

Delegate the handling of Units to the Tile
class (not all Unit methods shown)

Create skeleton classes for Tile and Unit…
they are outside our focus for now
 Focus on one feature at a time!

Don’t get distracted with features that
won’t reduce the risks of your project

12Friday, October 5, 2007

Reflection: Rapid Prototying

• Writing code for the board class at this stage of the game is an example of
rapid prototyping

• It helps answer the question

• do I really understand what the board has to do?

• We could have also chosen to just create a class diagram and outline
Board’s attributes and methods and associations, like this:

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

Unit

addUnit(Unit)
removeUnit(Unit)
getUnits(): List
removeUnits()

units: Unit [*]
Tile

*

units

Note: strange use of associations in this
diagram. The associations from Board to
Unit and Tile denote “coupling”
relationships, rather than the normal
“instance variable” relationship… I
recommend against using UML in this
fashion!

13Friday, October 5, 2007

Feature 2: Game Specific Units

• We focus on the “game specific units” feature next for several reasons

• Its a key feature but currently way underdeveloped (see previous diagram)

• It is related to the Board concept and since architecture includes
specifying the relationships between major system components, we need
to define Units further such that we can begin to consider the relationship
between Board and Unit

• Game Specific Units

• Different game designers have different ideas about Units

• some want attack, defense, and experience properties

• some want lots of weapons

• some want units to have names and track relationships with other units

• all want different types of units: land, air, and space

14Friday, October 5, 2007

Commonality Analysis

• For framework design, we want to identify the shared properties of all the
different requests received from the game designers

• Shared aspects go in the framework

• Variable aspects go outside the framework but should still be accessible to
the framework via inheritance, polymorphism, interfaces, etc.

• The common need in this instance is a bit abstract but can be stated
succinctly

• They need a Unit class with a variable number of atts of different types

• Sound familiar?

• This is exactly the same requirement that our InstrumentSpec class had

• When its the number and type of properties that is the “thing that
varies”, make the properties dynamic via a collection class

• We want to avoid, therefore, an approach in which Unit is sub-classed

15Friday, October 5, 2007

Solution: Just like Instrument Spec

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

type: String
properties: Map

Unit

Provides Scalability

Number of
Unit Types

Separate
Subclasses

Dynamic
Properties

3 4 1

25 26 1

100 101 1

Note: no need for code this
time. The implementation of
this class is obvious!

16Friday, October 5, 2007

To Code or Not to Code

• The book brings up an excellent point on page 364

• They have a discussion about why they wrote code for the Board class but
skipped writing code for the Unit class, noting that reducing risk is key

• Do some initial design work to verify that a feature is essential, well
understood, and feasible

• If you need code, then write it but if you do not, then avoid it!

• They then ask the question “So, there’s not a lot of code involved in OO A&D,
is there?”. Their response is excellent.

• OO A&D is ALL about code. Its about getting your design right, having it
be clean, well structured, flexible and extensible… because if you get that
right then the code will be EASY to write and maintain

• Sometimes the best way to write great code is to hold off on writing
code as long as you can!

17Friday, October 5, 2007

Feature 3: Coordinating Movement

• They repeat the process used for feature 2 for feature 3

• Ask the customer

• Perform Commonality Analysis

• Develop a Design for the feature (gain confidence you can implement it)

• After doing these two steps, they acquire this information:

What’s common? What’s variable?

Check if move is legal
The algorithm to check the legality of a move is

different for every game

Unit’s attributes determine how far it can move
The number and specific properties used for this are

different for every game

Other factors (such as terrain) will affect movement
The other factors that affect movement are different

for every game

18Friday, October 5, 2007

What do they decide? They Punt!

• In the book, they decide to punt on this feature and declare it out-of-scope

• Lame! (In my not so humble opinion…)

• They say: “When you find more things that are different about a feature than
things that are the same, there may not be a good generic solution”

• But I think they missed out on an opportunity to further define the Board and
Unit classes (note: the book specifically discounts my approach)

• In particular, if they had made Unit an abstract base class, they could have
game designers add subclasses that represent movement rules for
different types of Units (losing some of the previous scalability)

• The abstract interface: canMove(Tile), determinePath(), etc.

• The Board class could employ a Strategy pattern to allow Units to
retrieve the other factors that might affect movement, etc.

• The framework’s complexity goes up, but in exchange it does more for you!

19Friday, October 5, 2007

Classic Programmer Reaction

• “Great. So we’ve got a little sheet of paper with some check marks, a few
classes that we know aren’t finished, and lots of UML diagrams. And I’m
supposed to believe this is how you write great software.”

• Absolutely!

• Remember this is just the start of the first iteration of many

• When you start a project, you don’t have a lot of information and you can
waste a lot of time if you don’t start by acquiring more detail in a
systematic fashion

• Domain Analysis, The Three Qs of Architecture, and Commonality
Analysis can all help you to systematically whittle a large problem down
to smaller more manageable chunks

• The key point is to reduce risk with each step you take, so you can get to a
point where you have a handle on the “big picture” and can start working
on its constituent parts

20Friday, October 5, 2007

Wrapping Up

• Architecture helps you turn all your diagrams, plans, and feature lists into a
well-ordered application

• Focus on features that are the essence of your system, that have unclear
meanings, or that don’t seem feasible

• If you don’t need all of the detail of a use case, just write simple scenarios to
help you identify the characteristics of a particular feature

• These simple scenarios can be turned into the “main path” of a use case
at a later stage in the software life cycle

• Be open to getting lots of feedback from your customer… if something is
unclear, go back to them and get additional feedback so that you can move
forward with your design

21Friday, October 5, 2007

Review of Homework 1

• Question 1: Use of Inheritance versus Use of Delegation

• Question 2: Create a Class Diagram

• Question 3: Design and Implement a Simple OO System

22Friday, October 5, 2007

Question 1: Inheritance versus Delegation

Shape

Rectangle

Square

Shape

Rectangle Square

Semantics?

23Friday, October 5, 2007

Questions

• Assume rectangle has width and height attributes with their associated
getters and setters

• getWidth(), getHeight(), setWidth(), setHeight()

• Square cannot reuse all of these methods. Why Not?

• Does this have any implication on using inheritance between Rectangle and
Square?

• Put another way, can using inheritance between these two classes cause
any problems?

• How might the diagram on the right address these issues?

• Do problems remain with this approach?

24Friday, October 5, 2007

Question 2: Create a Class Diagram

• A structural computing system is made up of elements.

• There are two types of elements, atoms and collections.

• Atoms are used to store application-specific objects supplied by clients

• Collections are used to group other elements

• All elements have a unique id and a set of attributes.

• Each attribute has a name, which is a string, and a value, which can be one of
any number of different types all of which share a common interface provided
by an abstract class called AttributeValue.

• Elements are stored by a repository, which manages their persistence and
which also can be used to search for specific elements via their attributes.

25Friday, October 5, 2007

Question 3: Design/Implement Simple OO System

• Shape Environment

• Canvas with at least a Report() method

• Class Hierarchy of Shapes with various requirements

• Main program with these requirements

1.creates a canvas

2.adds 5 to 10 shapes of various types to it.

3.randomly select a shape and apply move() or scale() operation to it

4.Repeat the previous step 19 times until 20 shapes have been randomly
selected and either moved or scaled.

5.find two shapes farthest apart along x axis and align them vertically

6.find two shapes farthest apart along y axis and align them horizontally

• Your main program should invoke report() method after steps 2-6

26Friday, October 5, 2007

Coming Up Next

• Lecture 13: Originality is Overrated

• Read Chapter 8 of the OO A&D book

• Lecture 14: Testing And Iterating

• Read Chapter 9 of the OO A&D book

27Friday, October 5, 2007

