
Solving Really Big Problems

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 11 — 10/02/2007

© University of Colorado, 2007

1Tuesday, October 2, 2007

Why Start with a Song?

• We are going to be learning about software architecture this week

• Thinking about music can help in understanding architecture

• What is the architecture of a song?

• Components: verses, refrain, solos, …

• Sub-Components: Notes, Rests, Lyrics

• Connectors: Arrangements, “the bridge”, “swing section”, …

• Styles: Jazz, Classical, 80s alternative, indie, funk, goth, death metal, …

• Common (or Stylistic) Elements: melody, counter melody, echoing, themes,
muscial pyramids, etc.

• Experience: same song can be vastly different based on the performers

Note: I played Stan Kenton’s version of Malaguena
before lecture, making notes on the song’s structure

2Tuesday, October 2, 2007

Lecture Goals

• Review material from Chapter 6 of the OO A&D textbook

• How do you solve big problems

• That is, how do you design and build really large software systems?

• Domain Analysis

• Use Case Diagrams

• Introduction to Software Architecture

• Discuss the Chapter 6 Example: Gary’s Game Framework

• Emphasize the OO concepts and techniques encountered in Chapter 6

3Tuesday, October 2, 2007

Living in Smallville?

• So far, we’ve been discussing OO A&D in the context of small applications

• Rick’s Guitars: Less than 15 classes (at its worst)

• Doug’s Dog Doors: Never more than 5 classes!

• Will the techniques that we’ve learned so far apply to real systems?

• which tend to be big, complex, and consist of 100s to 1000s of classes

• The quick answer?

• Yes

• Our three step life cycle (make your software work, apply OO principles, strive
for a maintainable, reusable design) still applies to large situations

• with the assistance of new techniques: software architecture, use case
diagrams, domain analysis, design patterns, and more

• The long answer?

4Tuesday, October 2, 2007

Its just a matter of perspective!

5Tuesday, October 2, 2007

The (Sometimes Painful) Real World	

• Dealing with the difficulties of large-
scale, real-world software
development can feel the same as if
a bull is rapidly bearing down on you!

• But if you view the problem in the
right way (and get out of the bull’s
way pronto), the complexity of the
real world can be handled

• The key is “divide and conquer”

• You can solve a big problem by
breaking it into lots of functional
pieces, and then work on each
piece individually

• perhaps by applying “divide
and conquer” again!

Big Problem

Smaller
Problems

Even
Smaller Problems

6Tuesday, October 2, 2007

What have we learned so far?

• Analysis helps ensure that your systems works in real-world contexts

• Analysis is even more important when working on large systems

• Get good requirements by understanding what the system needs to do

• Apply this to the small problems, combine to address the big problem

• Encapsulate what varies to achieve flexible, easy-to-change software

• In large systems, encapsulation breaks up big problems into small ones

• Code to an interface to create software that is easy to extend

• In large systems, coding to an interface can reduce internal dependencies

• Ensure that components have only one reason to change

• High cohesion is critical in large systems: individual pieces are
independent of each other and can be worked on in isolation

7Tuesday, October 2, 2007

Example: Gary’s Games

• The example in this chapter involves designing a game framework (note: not
a game but a game framework)

• The book presents you with a vision statement from your client

• It has some details but doesn’t come close to a requirements spec

• However, when dealing with a large system, avoid jumping straight into
creating requirements and use cases

• You need a detailed understanding of the application domain (problem
domain) before you can create a requirements spec and use cases

• We need to know

• What is the system like?

• strategy board games, it turns out

• What is the system not like?

• Halo 3 (for instance)

8Tuesday, October 2, 2007

Step 1: Listen to the Customer

• To gain this information, we need to meet with the customer and listen to their
discussions about the system

• The “customer” may be many different people playing different roles

• Management

• Marketing

• Design

• Sales

• All will have important information to provide and the multiple perspectives
will give you a more accurate picture of your system’s real-world context

9Tuesday, October 2, 2007

Step 2: Find the Features

• Using the information provided by the customer, identify the features that
your system will have

• A feature is a high-level description of something a system needs to do

• Features can then lead to requirements

• Think of them as compound requirements

• One feature may be decomposed into multiple requirements

• These requirements then need to be implemented to satisfy the feature

• Because features are high-level, they are a useful for getting a project started
when the customer has not yet provided you with a lot of details

10Tuesday, October 2, 2007

Gary’s Features

Features for Gary’s Game System

1. Supports different time periods, including fictional periods
like sci-fi and fantasy
2. Supports add-on modules for additional campaigns or
battle scenarios
3. Supports different types of terrain
4. Supports multiple types of troops or units that are game-
specific
5. Each game has a board, made up of square tiles, each with
a terrian type.
6. The framework keeps up with whose turn it is an
coordinates basic movement

11Tuesday, October 2, 2007

Feature vs. Requirement?

• The book warns against getting too caught up in the difference between
features and requirements

• Just think of features as compound requirements

• Since they can be decomposed into lots of smaller requirements, they cover
broad classes of functionality that the system has to support

• Thus making them easier to find than smaller requirements when a
project is just getting started

12Tuesday, October 2, 2007

Step 3: Big Picture View

• The next step is to acquire a broad view of the major activities your system
engages in:

• “What the system is supposed to do”

• without resorting to writing specific use cases

• use cases again require a lot of detail; detail that you might not have

• The solution?

• Identify the types of users that interact with the system (aka Actors)

• Identify the names of the use cases these actors interact with

• In other words, what are the major tasks handled by this system?

• This view is called the use case diagram

13Tuesday, October 2, 2007

Example

Game System Framework

Game Designer

Create New

Game

Modify Existing

Game

Deploy Game

System
Boundary

Use Cases
Actor

But how do features relate to this view of the system?

14Tuesday, October 2, 2007

Getting back to features

• Use your feature list to make sure your use case diagram is complete

• Try to assign features to use cases

• If a feature can’t be assigned, then add use cases until coverage is
complete

• The book assigns five of the features to the Create New Game use case

• I thought this was a bit excessive: for instance, I felt that the “add-on
modules” feature should have been assigned to the “Modify” use case

• One feature “handle turns, coordinate movement” was left unassigned

• They asked the question: what Actor would need this use case?

• The answer: not a Game Designer but a Game itself

• Since a Game is built using the framework, its an external actor that needs
its own use cases!

15Tuesday, October 2, 2007

Updated Use Case Diagram

Game System Framework

Game Designer

Create

New Game

Modify

Existing

Game

Deploy

Game

Game

Create

Board

Move Units

Add/

Remove

Units

Diagram gives “big picture” view of framework

16Tuesday, October 2, 2007

The Result?

• We have created a feature list to capture the BIG THINGS that your system
needs to do

• Features don’t require as much detail as individual requirements

• They allow us to capture broad categories of functionality

• We drew a use case diagram to identify important actors and use cases

• without getting bogged down in the specifics of the use cases

• which often require a lot of detail

• These two artifacts combine to give us a “big picture” view of the system

• also called the “system at 10,000 feet” view

• It shows us what the system IS without getting into too much detail

• But, we can now use this as a starting point for additional OO A&D work once
we break this information up into smaller pieces of functionality

17Tuesday, October 2, 2007

Domain Analysis

• These two artifacts by staying at a high level of abstraction allowed us to
conduct domain analysis (without even knowing it!)

• Domain Analysis (def): The process of identifying, collecting, organizing,
and representing the relevant information of a domain

• based upon the study of existing systems and their development
histories, knowledge captured from domain experts, underlying theory,
and emerging technology in the domain

• Feature lists capture requirements using terms familiar to the customer

• Rather than giving our customers: packages, UML diagrams, and code

• We give them: features and scenarios using familiar terminology

• This makes for very happy customers who can provide additional guidance
now that “they know that you know” the core details of the domain

18Tuesday, October 2, 2007

What’s Next?

• The Big Break-Up

• That is, splitting our “big problem” into smaller problems

• The book introduces the concept of “module” (aka “package”) as a means
to partition our large system into something more manageable

• Looking at the feature list, they created the following modules

• Game, Board, Units, Controller, Utilities

• (the last one was added just on general principle)

• What about Graphics?

• Not in Scope!

• Very important lesson with respect to framework design:

• Clearly define the functional boundaries between the framework and
the applications that USE the framework

19Tuesday, October 2, 2007

Design Patterns

• Its a bit premature but the book pauses to notice that in partitioning the
framework the way we did, we have two of the pieces needed for a famous
design pattern

• The Model-View-Controller pattern

• The most important lesson at this point of the chapter is

• Design patterns don’t go into your code, they go into your BRAIN

• Design patterns are SOLUTIONS to common design PROBLEMS

• The more of these common solutions that you know, the better you’ll be
at avoiding the common design problems

• Applying design patterns is one of the LAST steps of design

• They are best applied during “step 3” of our simple OO A&D process

• We will turn our attention to learning design patterns once we have finished
with the OO A&D textbook

20Tuesday, October 2, 2007

Turning a Big Problem into Smaller Problems

• Summary

• We listened to the customer: vision statement, domain analysis

• We made sure we understood the system: feature list

• We drew up blueprints for the system we’re building: use case diagram

• We broke the big problem up into smaller pieces of functionality: modules

• We apply design patterns to help us solve smaller problems: stay tuned!

• Moving on…

• Since we will be learning about the role software architecture plays in
designing and implementing large software systems next lecture, lets end
this lecture with a brief introduction

21Tuesday, October 2, 2007

Introduction to Software Architecture (I)

• Any complex system is composed of subsystems that interact with one
another to provide the overall system’s intended functionality

• Software architecture is an area of software engineering research aimed
at providing tools and techniques for specifying a system's subsystems and
their interrelationships

• WARNING: This is the TRADITIONAL view of software architecture

• Our textbook has an alternate interpretation that focuses on the
practicalities of incorporating software architecture techniques into your
day-to-day work practice

• This is good! Its often difficult to understand how software architecture
concerns impact day-to-day tasks and decision making

22Tuesday, October 2, 2007

Introduction to Software Architecture (II)

• The level of granularity for software architecture design is at the system level,
not the package, module, or class level.

• For many complex systems, each individual subsystem may itself be a
large software system that has its own internal architecture

• Software architecture is a relatively recent research area (mid-90s) with an
active research community

• Architecture Description Languages

• Architecture Modeling Tools

• Architecture Analysis Tools

• Definition: The principled study of software components, including their
properties, relationships, and patterns of combination

23Tuesday, October 2, 2007

Introduction to Software Architecture (III)

• The design of a system's architecture is one of the first places in which
decisions concerning technologies for implementing the system are made

• For instance, consider the use of middleware technology or a large-scale
relational database

• As much as we would like to separate design and implementation,
these types of technologies are expensive; if a company has invested
in them, it may not be possible to choose an alternative technology

• The design of a system's architecture is also the earliest phase in which
certain non-functional requirements such as security, performance, and
reliability can be addressed

• For instance, if a system's subsystems must share information using
encrypted communication links, this can be specified in the system's
architecture model

24Tuesday, October 2, 2007

Software Architecture (I)

C DA B

25Tuesday, October 2, 2007

Software Architecture (II)

C DA B

26Tuesday, October 2, 2007

Software Architecture (III)

C DA B

C DA B

27Tuesday, October 2, 2007

Software Architecture (IV)

C DA B

C DA B

C

D

A

B

28Tuesday, October 2, 2007

Software Architecture (V)

C DA B

C DA B

C

D

A

B

C

D

A

B

29Tuesday, October 2, 2007

Software Architecture (VI)

C DA B

C DA B

C

D

A

B

C

D

A

B

C

D

A

B

30Tuesday, October 2, 2007

Software Architecture (VII)

C DA B

C DA B

C

D

A

B

C

D

A

B

C

D

A

B

Pipe & Filter

Software Bus

Shared
Repository

Layered Abstract Machine

31Tuesday, October 2, 2007

The Role of Architecture (I)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

32Tuesday, October 2, 2007

The Role of Architecture (II)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

33Tuesday, October 2, 2007

The Role of Architecture (III)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

34Tuesday, October 2, 2007

The Role of Architecture (IV)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

Major components
and interfaces

35Tuesday, October 2, 2007

The Role of Architecture (V)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

Major components
and interfaces

Buy/build strategy for each component

36Tuesday, October 2, 2007

The Role of Architecture (VI)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

Major components
and interfaces

Buy/build strategy for each component

Internal decomposition, functions, and data structures

37Tuesday, October 2, 2007

The Role of Architecture (VII)

Planning Phases

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

38Tuesday, October 2, 2007

The Role of Architecture (VIII)

Planning Phases

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

C
o
st

 o
f

Er
ro

r
R

ep
ai

r

Stage of Error Discovery

39Tuesday, October 2, 2007

Component and Connector View

• Components: Computational elements or data stores

• Connectors: Means of interaction between components

• Useful Metaphor:

• Polo, Water Polo, and Soccer (aka football in the rest of the world)

• Similar in processors and data (components), but differ in connectors

• The C&C view describes a graph of components connected via connectors
(often displayed as a boxes-and-arrows diagram)

• It is mainly a runtime view of a system's architecture: what components
exist at runtime and how do these components communicate with one
another

40Tuesday, October 2, 2007

Wrapping Up

• More Tools in your Toolbox: Solving Big Problems

• Listen to the customer and figure out what they want you to build

• Put together a feature list, in language the customer understands

• Make sure your features are what the customer actually wants

• Create blueprints of the system using use case diagrams

• Break the big system up into lots of smaller pieces

• Apply design patterns to the smaller sections of the system

• Use basic OO A&D principles to design and code each smaller section

• Reviewed basic concepts of Software Architecture

41Tuesday, October 2, 2007

Coming Up Next

• Lecture 12: Bringing Order to Chaos

• Read Chapter 7 of the OO A&D book (warning: long chapter)

• Lecture 13: Originality is Overrated

• Read Chapter 8 of the OO A&D book

42Tuesday, October 2, 2007

