
Good Design == Flexible Software

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 4448/6448 — Lecture 9 — 09/25/2007

1Wednesday, September 26, 2007

Lecture Goals

• Review material from Chapter 5 Part 1 of the OO A&D textbook

• Good Design == Flexible Software

• The problem of “It seemed like a good idea at the time”

• Discuss the Chapter 5 Example: Rick’s Guitars, Revisited

• Emphasize the OO concepts and techniques encountered in Chapter 5

2Wednesday, September 26, 2007

Chapter 5 Overview

• Main Points

• Change in software development is inevitable

• In order to handle change, you need flexible software

• In particular, you need to design your system to be flexible for the
most common types of change that it will encounter

• Designing flexibility for infrequent change is counterproductive

• Unfortunately, achieving flexible designs “the first time” is really hard

• And, typically, only possible after acquiring experience with a domain

• Without experience, small changes can turn into big problems!

3Wednesday, September 26, 2007

Rick is Back

• The software application that we produced for Rick back in Chapter 1 has
been working great…

• BUT… Rick would like to start carrying mandolins alongside guitars

• Lets look at the original design and talk about how to add support for
Mandolins

4Wednesday, September 26, 2007

Original Design (circa End of Chapter 1)

addGuitar(String, double,
GuitarSpec)
getGuitar(Sring): Guitar
search(GuitarSpec): Guitar [*]

Inventory

getSerialNumber(): String
getPrice(): double
setPrice(double)
getSpec(): GuitarSpec

serialNumber: String
price: double

Guitar

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int

model: String
numStrings: int

GuitarSpec

Builder Type Wood

inventory *

spec

builder topWood backWoodtype

5Wednesday, September 26, 2007

How to add a Mandolin?

getSerialNumber(): String
getPrice(): double
setPrice(double)
getSpec(): GuitarSpec

serialNumber: String
price: double

Guitar

getSerialNumber(): String
getPrice(): double
setPrice(double)
getSpec(): MandolinSpec

serialNumber: String
price: double

Mandolin

These classes are very similar.
What should we do?

6Wednesday, September 26, 2007

Remove Duplication Via Inheritance

Wow!

getSpec(): GuitarSpec
Guitar

getSpec(): MandolinSpec
Mandolin

getSerialNumber(): String
getPrice(): double
setPrice(double)

serialNumber: String
price: double

Instrument

But why is the Instrument class name in italics?

7Wednesday, September 26, 2007

Abstract Classes (I)

• Instrument is an abstract class

• UML indicates an abstract class by setting its class name in italics

• Too subtle for my taste… you can also add a stereotype with the value
«abstract» under a bold classname to indicate the same thing

• Abstract classes are placeholders for actual implementation classes

• You can’t instantiate an abstract class directly

• Recall that we talked about abstract classes when we discussed the
concept of “design by contract”

• The abstract class, typically, defines behavior and the subclasses
implement that behavior

8Wednesday, September 26, 2007

Abstract Classes (II)

• In this instance, Instrument provides method bodies for all of its methods, but
you still don’t want to instantiate it directly

• However, there may be differences in behavior between Guitars and
Mandolins

• Those behaviors will live in the respective subclasses

• In the previous diagram, Instrument is known as a base class for Mandolin
and Guitar… as the book says “they base their behavior off of it”, and then
extend it as needed to make sense for them

• Again, we make Instrument abstract because we don’t think of it as an entity
that can be instantiated. In the real world, you never hold an “instrument” in
your hand, you hold trumpets, trombones, flutes, triangles, etc.

9Wednesday, September 26, 2007

Abstract Classes (III)

public abstract class Instrument {1

2

 private String serialNumber;3

 private double price;4

 5

 public Instrument(String serialNumber, double price) {6

 this.serialNumber = serialNumber;7

 this.price = price;8

 }9

 10

 public String getSerialNumber() {11

 return serialNumber;12

 }13

 14

 public double getPrice() {15

 return price;16

 }17

 18

 public void setPrice(double price) {19

 this.price = price;20

 }21

 22

 public abstract InstrumentSpec getSpec();23

 24

}25

26

Note use of abstract
keyword in class definition

and method definition

What’s an InstrumentSpec
and where’s the method body?

10Wednesday, September 26, 2007

Abstract Classes (IV)

• The method

• public abstract InstrumentSpec getSpec();

• is an example of an abstract class defining behavior that MUST be
implemented by its subclasses

• If a subclass of Instrument does not provide a method body for the
getSpec() method, then it has to be declared abstract as well

• Don’t be alarmed by the requirement of returning an InstrumentSpec,
through the use of substitutability, we can return an instance of
InstrumentSpec OR any of its subclasses

• This implies that GuitarSpec is going to become a subclass of
InstrumentSpec (a class we need to create)

11Wednesday, September 26, 2007

Updating Instrument

public abstract class Instrument {1

2

 private String serialNumber;3

 private double price;4

 private InstrumentSpec spec;5

 6

 public Instrument(String serialNumber, double price, InstrumentSpec spec) {7

 this.serialNumber = serialNumber;8

 this.price = price;9

 this.spec = spec;10

 }11

 12

 public String getSerialNumber() {13

 return serialNumber;14

 }15

 16

 public double getPrice() {17

 return price;18

 }19

 20

 public void setPrice(double price) {21

 this.price = price;22

 }23

 24

 public InstrumentSpec getSpec() {25

 return spec;26

 }27

 28

}29

30

The book implements
Instrument like this.

What does this imply
about the Guitar and
Mandolin classes?

12Wednesday, September 26, 2007

Guitar and Mandolin as Instrument Subclasses

public class Guitar extends Instrument {1

 public Guitar(String serialNumber, double price, GuitarSpec spec) {2

 super(serialNumber, price, spec);3

 }4

}5

6

public class Mandolin extends Instrument {7

 public Mandolin(String serialNumber, double price, MandolinSpec spec) {8

 super(serialNumber, price, spec);9

 }10

}11

12

Guitar and Mandolin are “empty” classes; all they do is define new
types, no new behaviors!

All the heavy lifting is being performed by Instrument.

This code is slightly different than the class diagram on slide 7,
however. I would implement these classes differently. See next slide.

13Wednesday, September 26, 2007

Guitar and Mandolin Classes, Take 2

public class Guitar extends Instrument {1

2

 public Guitar(String serialNumber, double price, GuitarSpec spec) {3

 super(serialNumber, price, spec);4

 }5

 6

 public GuitarSpec getSpec() {7

 return (GuitarSpec)super.getSpec();8

 }9

}10

11

public class Mandolin extends Instrument {12

13

 public Mandolin(String serialNumber, double price, MandolinSpec spec) {14

 super(serialNumber, price, spec);15

 }16

 17

 public MandolinSpec getSpec() {18

 return (MandolinSpec)super.getSpec();19

 }20

21

}22

23

This code matches the class
diagram and ensures that Guitars
return GuitarSpecs and
Mandolins return MandolinSpecs.

14Wednesday, September 26, 2007

Moving On… GuitarSpec and MandolinSpec

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
getNumStrings(): int
matches(GuitarSpec): boolean

model: String
numStrings: int

GuitarSpec

Builder

Type

Wood

builder

topWood

backWood

type

getBuilder(): Builder
getModel(): String
getType(): Type
getStyle(): Style
getBackWood(): Wood
getTopWood(): Wood
matches(MandolinSpec): boolean

model: String
MandolinSpec

topWood

backWood

type

builder

Style

style

Wow! That’s a lot of duplication.
Time for another abstract base class!

15Wednesday, September 26, 2007

InstrumentSpec to the Rescue

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

model: String
InstrumentSpec

Builder

Type

Wood

builder

topWood

backWood

type

getStyle(): Style
matches(MandolinSpec): boolean

MandolinSpec
Style

style

getNumStrings(): int
matches(GuitarSpec): boolean

numStrings: int
GuitarSpec

16Wednesday, September 26, 2007

matches() in new design

• The nice thing about this new design is that the method body for matches() in
InstrumentSpec takes care of comparing the builder, model, type, and wood
attributes for both Guitar and Mandolin

• The GuitarSpec matches() method invokes the superclass method and then
only has to compare the numString attribute

• Likewise for MandolinSpec except that it only has to compare style attributes
across two MandolinSpecs

• See code on pages 209-211

17Wednesday, September 26, 2007

Design Principle

• In both cases, with Instrument and InstrumentSpec, we did the following:

• Whenever you find common behavior (or structure) in two or more places,
look to abstract that behavior into a class and then reuse that behavior in
the common classes

• Merging shared behavior between two or more classes into a common
superclass (most likely an abstract base class) is a common occurrence in
OO analysis and design

18Wednesday, September 26, 2007

Putting It All Together

getBuilder(): Builder
getModel(): String
getType(): Type
getBackWood(): Wood
getTopWood(): Wood
matches(InstrumentSpec): boolean

model: String
InstrumentSpec

Builder

Type

Wood

builder

topWood

backWood

type

getStyle(): Style
matches(MandolinSpec): boolean

MandolinSpec
Style

style

getNumStrings(): int
matches(GuitarSpec): boolean

numStrings: int
GuitarSpec

getSpec():
GuitarSpec

Guitar

getSpec(): MandolinSpec
Mandolin

getSerialNumber(): String
getPrice(): double
setPrice(double)
getSpec(): InstrumentSpec

serialNumber: String
price: double

Instrument

spec

addInstrument(String, double, InstrumentSpec)
get(Sring): Instrument
search(GuitarSpec): Guitar [*]
search(MandolinSpec): Mandolin [*]

Inventory

inventory *

19Wednesday, September 26, 2007

Discussion

• Several changes to Inventory

• addInstrument() not addGuitar()

• “get(): Instrument” not “getGuitar(): Guitar”

• two search methods, one for Guitars and one for Mandolins

• Use of aggregation between Instrument and InstrumentSpec?

• The book introduces aggregation in a slightly different way than I did in
back in our “object fundamentals” lectures

• From the book: “Aggregation is a special form of association, and means
that one thing is made up (in part) of another thing. So Instrument is partly
made up of InstrumentSpec.”

• This is compatible with my definition: here the association is telling you
that one class contains another class. The latter class is considered a
part of the former class.

20Wednesday, September 26, 2007

Trouble in Paradise?

• After testing the new application, the book indicates a couple of weird
characteristics of the new design

• Guitar and Mandolin don’t seem to be pulling their weight. They are mainly
empty classes content to let Instrument do most of the work

• addInstrument() in the Inventory class now contains ugly code

• see next slide

• multiple search methods: Since Instrument and InstrumentSpec are
abstract classes, you can’t instantiate them directly and thus you are
forced to create either a GuitarSpec or a MandolinSpec in order to do a
search

• This means you can’t do a search across both types of instruments

• Plus the design seems to be more tightly coupled than before

21Wednesday, September 26, 2007

addInstrument() code

• Because the third parameter to addInstrument() is an InstrumentSpec, we
need to check at run-time what type of specification has been passed in
order to add the correct type of Instrument to the Inventory. Like this:
public void addInstrument(… InstrumentSpec spec) {

Instrument instrument = null;

if (spec instanceof GuitarSpec) {

instrument = new Guitar(…);

} else if (spec instanceof MandolinSpec) {

instrument = new Mandolin();

}

inventory.add(instrument);

}

• instanceof allows us to determine an object’s type at run-time. Unfortunately,
this means that each time we add a subclass to Instrument, this code has to
change. Yuck!

22Wednesday, September 26, 2007

How should we confirm our suspicions?

• Having this many qualms about the new design is a serious problem!

• In order to confirm our suspicions, the book has an excellent suggestion

• Test the design by changing the program once again!

• Rick stops by and says thanks for adding support for Mandolins

• Now please add support for bass guitars, banjos, dobros and fiddles!!!

• And we discover that in order to do this, we have to make LOTS of changes
to our system

• one new Instrument subclass and one new InstrumentSpec subclass per
new instrument

• two new lines of code in addInstrument() per new instrument

• one new search method in inventory per new instrument

• duplication of properties across individual subclasses (numStrings in
Banjo) but no easy way to merge duplication into superclasses

23Wednesday, September 26, 2007

Design Heuristic Violated

• All of this work to add a new Instrument to our design indicates that
something is not right

• When working on Mandolin, each decision that we made “seemed right at
the time”

• but when we finished the design, we could see that similar changes
would just exacerbate the problems we noticed with the new design

• When you find yourself in a situation like this, you need to reexamine the
decisions that you made closely

• You may see new ways in which “things can vary” and thus need to be
encapsulated. We need to develop a new design in which adding a new
instrument to the system is easy to do!

• After all, Rick has demonstrated that he likes to add new instruments all the
time!

24Wednesday, September 26, 2007

OO Catastrophe!

• The book now reviews concepts that will play a critical role in helping to solve
the problems we encountered in the new design of Rick’s application

• These concepts are

• Code to an Interface

• Encapsulate What Varies

• Each Class has only One Reason to Change

25Wednesday, September 26, 2007

Code to an Interface

• Coding to an interface, rather than to an implementation makes your software
easier to extend

• Example of an Athlete interface with lots of different implementations

• FootballPlayer, BaseballPlayer, HockeyPlayer, …

• When dealing with these classes, you can either choose to code to one of
the subclasses directly or to the common interface

• The latter choice leads to more flexible code that is easier to extend

• This is similar to my argument about coding to the root of a class
hierarchy. That code continues to work no matter how many
subclasses you add to the hierarchy

• In this case, interface-specific code can handle all of the implementing
classes uniformly. And does not need to change if another class
decides to implement the interface

26Wednesday, September 26, 2007

Encapsulate What Varies

• Encapsulation, aka information hiding, has several benefits

• It can reduce duplicated code (as seen with Instrument and its subclasses)

• but, more importantly, it can protect classes from unnecessary changes

• Anytime you have behavior in your application that is likely to change, move it
away from parts of your application that is unlikely to change

• In other words, encapsulate what varies

• Painter class with prepareEasel(), cleanBrushes(), and paint() methods

• The first two are unlikely to change, the latter might change frequently

• As a result, create a PaintStyle() base class with an abstract paint() method

• Allow subclasses to specify particular styles: Modern, Cubist, Surreal, …

• Associate the Painter class with a particular style and change it as needed

• This is our first encounter with the Strategy design pattern

27Wednesday, September 26, 2007

Each Class has only One Reason to Change

• Since change in a software system is inevitable:

• take steps to minimize the impact of change

• The best way to do this is to make sure that each class has only one reason
to change

• consider the reverse situation

• if a particular class has five ways in which it can change, it has a greater
chance of needing to change when any given change request comes in
than classes that have only one reason to change

• Automobile example with methods start(), stop(), changeTires(), drive(), wash
(), checkOil(), etc.

• Class can be split up to isolate potential changes

• such as different driving styles, washing styles, approaches to changing
the oil and tires, etc.

28Wednesday, September 26, 2007

Wrapping Up

• These three heuristics will aid us in our goal of addressing the problems
discovered in the new design

• The key point of this chapter is to demonstrate how easy it is to go down
the wrong design path

• how looking at one change in isolation, our decisions can seem sensible
and “right at the time”

• reflecting on whether we would want to make similar changes using the
same process can help to identify problems early

• “Do I really want to change addInstrument() each time I add a new type
of instrument to the system?”

• As we will see, the three heuristics will lead us to a design in which classes
are more cohesive and less coupled than the current design

29Wednesday, September 26, 2007

Coming Up Next

• Lecture 10: Flexible Software

• Read Chapter 5 (part 2) of the OO A&D book

• Lecture 11: Solving Really Big Problems

• Read Chapter 6 of the OO A&D book

30Wednesday, September 26, 2007

