
Object Fundamentals
Part Three

Kenneth M. Anderson

University of Colorado, Boulder

CSCI 4448/6448 — Lecture 4 — 09/06/2007

1Friday, September 7, 2007

Lecture Goals
Continue our tour of the basic concepts, terminology,
and notations for object-oriented analysis, design, and
programming

Some material for this lecture is drawn from Head
First Java by Sierra & Bates, © O'Reilly, 2003

2Friday, September 7, 2007

Overview
Delegation

HAS-A

Inheritance

IS-A

Polymorphism

message passing

polymorphic
arguments and return
types

Interfaces

Abstract Classes

Object Identity

Code Examples

3Friday, September 7, 2007

Delegation (I)
When designing a class, developers have three ways to
deal with an incoming request

Handle request by implementing code in a method

Let the class’s superclass handle the request

This is called inheritance, discussed next

Delegate the request to another object (delegation)

4Friday, September 7, 2007

Delegation (II)
Delegation is employed when some other class already
exists to handle a request that might be made on the
class being designed

The host class simply creates a private instance of
the helper class and sends messages to it when
appropriate

As such, delegation is often referred to as a “HAS-A”
relationship

A Car object HAS-A Engine object

5Friday, September 7, 2007

Delegation (III)
Advantages

Delegation is dynamic (not static)

delegation relationships can change at run-time

Not tied to inheritance

In languages that support only single inheritance
this is important!

6Friday, September 7, 2007

Inheritance (I)
Inheritance is a mechanism for sharing (public/
protected) features between classes

A class defines a type. A superclass is a more generic
instance of that type. A subclass is a more specific
instance of that type.

A subtype typically restricts the legal values of its
superclass

Real Numbers → Integers → Positive Integers

Component → Container → Control → Button →
Checkbox

7Friday, September 7, 2007

Inheritance (II)
Subclasses have an “IS-A” relationship with their
superclass

A Hippo IS-A Animal makes sense while the reverse
does not

IS-A relationships are transitive

If D is a subclass of C and C is a subclass of B,
then D IS-A C and D IS-A B are both true

Good OO design strives to make sure that all IS-A
relationships in a software system “make sense”

Consider Dog IS-A Canine vs. Dog IS-A Window

8Friday, September 7, 2007

Inheritance (III)
Inheritance enables significant code reuse since
subclasses gain access to the code defined in their
ancestors

The next two slides show two ways of creating a set of
classes modeling various types of Animals

The first uses no inheritance and most likely would
contain a lot of duplicated code

The second uses inheritance and would most likely
require less code than the first example

even though it has more classes than the former

9Friday, September 7, 2007

Animals (No Inheritance)
Lion

makeNoise()

roam()

sleep()

Cat

makeNoise()

roam()

sleep()

Tiger

makeNoise()

roam()

sleep()

Hippo

makeNoise()

roam()

sleep()

Elephant

makeNoise()

roam()

sleep()

Rhino

makeNoise()

roam()

sleep()

Dog

makeNoise()

roam()

sleep()

Wolf

makeNoise()

roam()

sleep()

10Friday, September 7, 2007

Animals (With Inheritance)

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

11Friday, September 7, 2007

Code Metrics
Indeed, I coded these two examples and discovered

without inheritance: 9 files, 200 lines of code

with inheritance: 13 files, 167 lines of code

approximately a 15% savings in this simple example

12Friday, September 7, 2007

Inheritance (IV)
An important aspect of inheritance is substitutability

Since a subclass can exhibit all of the behavior of its
superclass, it can be used anywhere an instance of
its superclass is used

The textbook describes this as polymorphism
(more on that in a moment)

Furthermore, subclasses can add additional behaviors
that make sense for it and override behaviors provided
by the superclass, altering them to suit its needs

This is both powerful AND dangerous

Why? Stay tuned for the answer…

13Friday, September 7, 2007

Polymorphism (I)
Object-Oriented programming languages support
polymorphism (“many forms”)

In practice, this allows code to be written with
respect to the root of an inheritance hierarchy and
function correctly if applied to an instance of one of
its subclasses

14Friday, September 7, 2007

Polymorphism (II)
Message Passing vs. Method Invocation

With polymorphism, a message ostensibly sent to a
superclass, may be handled by a subclass

Compare this

Animal a = new Animal()

a.sleep() // sleep() in Animal called

with this

Animal a = new Lion()

a.sleep() // sleep() in Lion called

15Friday, September 7, 2007

Polymorphism Example
Without polymorphism,
the code on the right
only calls methods in the
Animals class

With polymorphism

a.roam() invokes
Feline.roam()

a.makeNoise() invokes
Lion.makeNoise()

Animal

sleep()

roam()

makeNoise()

Feline

roam()

Lion

makeNoise()

Animal a = new Lion()
a.makeNoise();
a.roam();
a.sleep();

16Friday, September 7, 2007

Why is this important?
Polymorphism allows us to write very abstract code
that is robust with respect to the creation of new
subclasses

For instance

public void goToSleep(Animal[] zoo) {
 for (int i = 0; i < zoo.length; i++) {
 zoo[i].sleep();
 }
}

17Friday, September 7, 2007

Importance (II)
In the previous code

we don’t care what type of animals are contained in
the array

we just call sleep() and get the correct behavior for
each different type of animal

Indeed, if a new subclass of animal is created

the above code still functions correctly AND

it doesn’t need to be recompiled

It only cares about Animal, not its subclasses

18Friday, September 7, 2007

Importance (III)
We can view a class’s public methods as establishing a
contract that it and its subclasses promise to keep

if we “code to the (root) contract”, we can create very
robust and easy to maintain software systems

This perspective is known as “design by contract”

19Friday, September 7, 2007

Importance (IV)
Earlier, we referred to method overloading as “powerful
AND dangerous”

The danger comes from the possibility that a
subclass may change the behavior of a method such
that it no longer follows the contract established by a
superclass

such a change will break previously abstract and
robust code

20Friday, September 7, 2007

Importance (V)
Consider what would happen if an Animal subclass
overrides the sleep() method to make its instances flee
from a predator or eat a meal

Our goToSleep() method would no longer succeed in
putting all of the Zoo’s animals to sleep

If we could not change the offending subclass, we
would have to modify the goToSleep() method to
contain special case code to handle it

this would break abstraction and seriously degrade
the maintainability of that code

21Friday, September 7, 2007

Polymorphism (III)
Finally, polymorphism is supported in arguments to
methods and method return types

In our goToSleep() method, we passed in a
polymorphic argument, namely an array of Animals

The code doesn’t care if the array contains Animal
instances or any of its subclasses

In addition, we can create methods that return
polymorphic return values. For example

public Animal createRandomAnimal() {
 // code that randomly creates and
 // returns one of Animal's subclasses
}

22Friday, September 7, 2007

Polymorphism (IV)
When using the createRandomAnimal() method, we
don’t know ahead of time which instance of an Animal
subclass will be returned

That’s okay as long as we are happy to interact with
it via the interface provided by the Animal superclass

23Friday, September 7, 2007

Abstract Classes/Interfaces
There are times when you want to make the “design by
contract” principle explicit

Abstract classes and Interfaces let you do this

An abstract class is simply one which cannot be
directly instantiated

It is designed from the start to be subclassed

It does this by declaring a number of method
signatures without providing method
implementations for them

this sets a contract for subclasses

24Friday, September 7, 2007

Abstract Classes, Continued
Abstract classes are useful since

they allow you to provide code for some methods
(enabling code reuse)

while still defining an abstract interface that
subclasses must implement

Zoo example

Animal a = new Lion(); // manipulate Lion via Animal

Animal a = new Animal(); // what Animal is this?

Animal, Feline, Pachyderm, and Canine are good
candidates for being abstract classes

25Friday, September 7, 2007

Interfaces
Interfaces go one step further and only allow the
declaration of abstract methods

you cannot provide method implementations for any
of the methods declared by an interface

Interfaces are useful when you want to define a role in
your software system that could be played by any
number of classes

26Friday, September 7, 2007

Interface Example
Consider modifying the Animal hierarchy to provide
operations related to pets (e.g. play() or takeForWalk())

We have several options, all with pros and cons

add pet methods and code to Animal

add abstract pet methods to Animal

add pet methods only in the classes they belong
(no explicit contract)

make a separate Pet superclass and have pets
inherit from both Pet and Animal

make a Pet interface and have only pets
implement it

27Friday, September 7, 2007

Object Identity
In OO programming languages, all objects have a
unique identifier

This identifier might be its memory location or a
unique integer assigned to it when it was created

This identifier is used to enable a comparison of two
variables to see if they point at the same object

See example next slide

28Friday, September 7, 2007

Identity Example
public void compare(String a, String b) {
 if (a == b) {
 System.out.println("identical");
 } else if (a.equals(b)) {
 System.out.println("equal");
 } else {
 System.out.println("not equal");
 }
}

String ken = "Ken Anderson";
String max = "Max Anderson";
compare(ken, max); -- not equal
ken = max;
compare(ken, max); -- identical
max = new String("Max Anderson");
compare(ken, max); -- equal

29Friday, September 7, 2007

Identity in OO A&D (I)
Identity is also important in analysis and design

We do not want to create a class for objects that do
not have unique identity in our problem domain

Consider people in an elevator; does the elevator
care who pushes its buttons?

Consider a cargo tracking application; does the
system need to monitor every carrot that exists
inside a bag? how about each bag of carrots in a
crate?

Consider a flight between Denver and Chicago;
what uniquely identifies that flight? The plane? The
flight number? The cities? What?

30Friday, September 7, 2007

Identity in OO A&D (II)
When doing analysis, you will confront similar issues

you will be searching for uniquely identifiable objects
that help you solve your problem

31Friday, September 7, 2007

Coming Up Next
Lecture 5: Great Software

Read Chapter 1 of the OO A&D book

Lecture 6: Give Them What They Want

Read Chapter 2 of the OO A&D book

32Friday, September 7, 2007

