Object Fundamentals
Part Iwo

Kenneth:NVEEAnderson

Eniversity:of:Golorado, -Boulder

CSGEA448/6448 — Lecture 3 — 09/04/2007

| ecture Goals

® Continue our tour of the basic concepts, terminology,
and notations for object-oriented analysis, design, and
programming

. Some material for: this lecture is drawn from Heao
First Java by Sierra & Bates, © O'Rellly, 2003

Tuesday, September 4, 2007

Overview

® Relationships
® |nheritance
x Association

® Aggregation/
Composition

® Qualification

® |nterfaces

Tuesday, September 4, 2007

Objects (l)

x OO Technigues view software systems as being
composed of objects

®x Objects have
x state (aka attributes)
x Dehavior (aka methods or: Services)

® \\Ve would like objects to be
® Nighly cohesive
® ave a single purpose; make use of all features
® [0osely coupled
® pe dependent on only a few other classes

Tuesday, September 4, 2007

Objects ()

® Objects interact by sending messages to one another

® A message Is a request by object A to have object B
perform a particular task

® \When the task is complete, B may pass a value
pback to A

x Note: sometimes A ==

® that IS, an object can send a message to itself

Tuesday, September 4, 2007

Objects (I

® [N response to a message, an object may
® Update its internal state
x refrieve a value from its internal state
® create a new object (or set of objects)
® celegate part or allof the task 1o some other object

® AsS a result; objects can be viewed as members of
various-object:networks

x Objects in an object network (collaboration) work
together to perform a task for their host application

Tuesday, September 4, 2007

Objects (IV)

x UML notation

x Objects are drawn as rectangles with their names
and types underlined

x Ken : Person

® [he name of an object is optional. What is required is
to list the object’s type

® Person

® Note: the colon is not optional. It’s another clue that
you are talking about an object, not a class

Tuesday, September 4, 2007

Objects (V)

®x Objects that know about each other have lines drawn
between them

® [Qis connection has many names, the three most
common are

® Object reference
® reference
- {ink
® [\lessages are sent across links

® | INks are instances of associations (see below)

Tuesday, September 4, 2007

Objects (Example)

Skippy: Dog

Ken: Person

Felix: Cat

Classes (l)

® A class is a blueprint for an object

®x The blueprint specifies the atiributes (aka instance
variables) and methods: of the class

x attributes are things an-object of that class knows

® methods are things an object of that class does

® An object Is instantiated (created) from the
description provided: by its class

® [hus, objects are often called instances

Tuesday, September 4, 2007

Classes (ll)

® An object of a class has its own values for the
attributes of its class

® [For instance, two objects of the Person class can
have different values for the name attribute

® [N general, each object shares the implementation of a
class’s methods and thus behave similarly

® \\Vhen a class IS defined, its developer provides an
implementation for each of its methods

® [hus, object A and B of type Person each share the
same implementation of the sleep () method

Tuesday, September 4, 2007

Classes (lll)

® Classes can define “class wide” (aka static) attrioutes
and methods

® A static attribute Is shared among a class’s objects

n A static method does not have to be accessed via an
object; you invoke: static methods directly on a class

x \/\Ve will see uses for static attributes and methods
throughout the semester

Tuesday, September 4, 2007

Classes by Analogy

. Address Book

® Fach card in an address book IS an “instance” or
‘object” of the AddressBookCard class

x Each card has the same blank fields (attributes)
® You can do similarthings to each card
® cach card has the same set of methods

® [he numiber of cards in the book is an example of a
static attribute; sorting the cards alphabetically is an
example of a static method

Tuesday, September 4, 2007

Classes (V)

x UML Notation

® Classes appear as rectangles with multiple parts
® [he first part contains its name (defines a type)
® [he second part contains the class’s attributes

® [he third part contains the class’'s methods

artist
title

play()

Tuesday, September 4, 2007

Relationships: Inheritance

® Classes can be related in
food type
location

various ways
makeNoise()

®x One class can exteno

another (aka inhertance) eat()

roam()

® notation: an open

triangle points:tothe
SUperclass

® As we learned last time,
the subclass can ado
behaviors or override
existing ones

makeNoise()
eat()

Tuesday, September 4, 2007

Relationships: Association

® One class can reference
another (aka association)

® notation; straight line

® [his notation s a

graph
one o0

contal

class

Tuesday, September 4, 2007

ical:sho
~pboth ¢

n-an attribute
whose type is the other

Hippo ourHippo

addAnimal() addAnimal()

thand that
asSSes

makeNoise() makeNoise()
eat() eat()

Multiplicity

® Associations can indicate the number of instances
iInvolved In the relationship
® this IS Known as multiplicity

® An association with-no-markings:is--one to one’

® An association canalso indicate directionality

® Examples on next slide

Tuesday, September 4, 2007

Multiplicity Examples

One B with each A; one
A with each B

Same as above

Zero or more Bs with each
A: one A with each B

Zero or more Bs with each
A; ditto As with each B

Two to Five Bs with each
A: one A with each B

Zero or more Bs with each
A; B knows nothing about A

Tuesday, September 4, 2007 18

Relationships: whole-part

® Associations can also convey semantic information
about themselves

® |n particular, aggregations indicate that one object
contains a set of other objects

® {hink of it as a whole-part relationship between
® g class representing a group: of components
® g class representing the components

® Notation: aggregation is indicated with a white
diamond attached to the class playing the former role

Tuesday, September 4, 2007

Example: Aggregation

Aggregation Composition

Composition will
be defined on the

next slide
Chapter

Tuesday, September 4, 2007

Semantics of Aggregation

® Aggregation relationships are transitive

x if A contains B an B contains C; then A contains G
® Aggregation relationships are asymmetric

® [f A contains B, then B does not contain A

® A variant of aggregation is composition which adds the
property: of:existence:-adependency

® [A composes B, thenif A'is deleted, B is deleted

x Composition relationships are shown with a black
diamond attached to the composing class

Tuesday, September 4, 2007

Relationships: Qualification

® An association can be qualified with information that
iIndicates how objects on the other end of the
associlation are found

® [his allows a designer to indicate that the association
requires a guery mechanism of some sort

® ©.7g., an association:between a phonebook and its
entries might be qualified with a name, indicating that
the name is required to locate a particular entry

® Notation; a qualification is indicated with a rectangle
attached to the end of an association indicating the
attributes used in the query

Tuesday, September 4, 2007

Qualification Example

PhoneBook

Relationships: Interfaces

® A class can indicate that it implements an interface

® An interface Is a type of class definition: in-which only
method signatures: are defined

® A class implementing an interface provides method
bodies for each defined method signature

® [his allows a class to offer multiple types of services
that are independent of its inheritance relationships

x Other classes can then access a class via an interface

® [Nis IS Indicated via a "“ball and socket” notation

Tuesday, September 4, 2007

Example: Interfaces

Dog

food type
location

Dog

makeNoise()
eat()
roam()

food type
location

I Pet

Tuesday, September 4, 2007

makeNoise()
eat()
roam()

\o/ Pet

Person

25

Class summary

® Classes are blue prints used to create objects
x Classes can participate in- multiple relationship types
® nheritance
® association
® gssoclations have multiplicity
® aggregation/composition
= qualification

® |nterfaces

Tuesday, September 4, 2007

Coming Up Next

® | ecture 4: Object Fundamentals, Part 3
» | ecture 5: Great Software

x Read Chapter 1 of the OO A&D book

Tuesday, September 4, 2007

