
Object Fundamentals
Part Two

Kenneth M. Anderson

University of Colorado, Boulder

CSCI 4448/6448 — Lecture 3 — 09/04/2007

1Tuesday, September 4, 2007

Lecture Goals
Continue our tour of the basic concepts, terminology,
and notations for object-oriented analysis, design, and
programming

Some material for this lecture is drawn from Head
First Java by Sierra & Bates, © O'Reilly, 2003

2Tuesday, September 4, 2007

Overview
Objects

Classes

Relationships

Inheritance

Association

Aggregation/
Composition

Qualification

Interfaces

3Tuesday, September 4, 2007

Objects (I)
OO Techniques view software systems as being
composed of objects

Objects have

state (aka attributes)

behavior (aka methods or services)

We would like objects to be

highly cohesive

have a single purpose; make use of all features

loosely coupled

be dependent on only a few other classes

4Tuesday, September 4, 2007

Objects (II)
Objects interact by sending messages to one another

A message is a request by object A to have object B
perform a particular task

When the task is complete, B may pass a value
back to A

Note: sometimes A == B

that is, an object can send a message to itself

5Tuesday, September 4, 2007

Objects (III)
In response to a message, an object may

update its internal state

retrieve a value from its internal state

create a new object (or set of objects)

delegate part or all of the task to some other object

As a result, objects can be viewed as members of
various object networks

Objects in an object network (collaboration) work
together to perform a task for their host application

6Tuesday, September 4, 2007

Objects (IV)
UML notation

Objects are drawn as rectangles with their names
and types underlined

Ken : Person

The name of an object is optional. What is required is
to list the object’s type

: Person

Note: the colon is not optional. It’s another clue that
you are talking about an object, not a class

7Tuesday, September 4, 2007

Objects (V)
Objects that know about each other have lines drawn
between them

This connection has many names, the three most
common are

object reference

reference

link

Messages are sent across links

Links are instances of associations (see below)

8Tuesday, September 4, 2007

Objects (Example)

Skippy: Dog

Felix: Cat

Ken: Person

sit()

feed()

9Tuesday, September 4, 2007

Classes (I)
A class is a blueprint for an object

The blueprint specifies the attributes (aka instance
variables) and methods of the class

attributes are things an object of that class knows

methods are things an object of that class does

An object is instantiated (created) from the
description provided by its class

Thus, objects are often called instances

10Tuesday, September 4, 2007

Classes (II)
An object of a class has its own values for the
attributes of its class

For instance, two objects of the Person class can
have different values for the name attribute

In general, each object shares the implementation of a
class’s methods and thus behave similarly

When a class is defined, its developer provides an
implementation for each of its methods

Thus, object A and B of type Person each share the
same implementation of the sleep() method

11Tuesday, September 4, 2007

Classes (III)
Classes can define “class wide” (aka static) attributes
and methods

A static attribute is shared among a class’s objects

A static method does not have to be accessed via an
object; you invoke static methods directly on a class

We will see uses for static attributes and methods
throughout the semester

12Tuesday, September 4, 2007

Classes by Analogy
Address Book

Each card in an address book is an “instance” or
“object” of the AddressBookCard class

Each card has the same blank fields (attributes)

You can do similar things to each card

each card has the same set of methods

The number of cards in the book is an example of a
static attribute; sorting the cards alphabetically is an
example of a static method

13Tuesday, September 4, 2007

Classes (IV)
UML Notation

Classes appear as rectangles with multiple parts

The first part contains its name (defines a type)

The second part contains the class’s attributes

The third part contains the class’s methods

play()

artist
title

Song

14Tuesday, September 4, 2007

Relationships: Inheritance
Classes can be related in
various ways

One class can extend
another (aka inheritance)

notation: an open
triangle points to the
superclass

As we learned last time,
the subclass can add
behaviors or override
existing ones

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

15Tuesday, September 4, 2007

Relationships: Association
One class can reference
another (aka association)

notation: straight line

This notation is a
graphical shorthand that
one or both classes
contain an attribute
whose type is the other
class

Zoo

addAnimal()

Hippo

eat()

makeNoise()

Zoo

addAnimal()

Hippo ourHippo

shortcut for

Hippo

eat()

makeNoise()

Zoo myZoo

16Tuesday, September 4, 2007

Multiplicity
Associations can indicate the number of instances
involved in the relationship

this is known as multiplicity

An association with no markings is “one to one”

An association can also indicate directionality

Examples on next slide

17Tuesday, September 4, 2007

Multiplicity Examples
A B

One B with each A; one
A with each B

A B
11

Same as above

A B
*1 Zero or more Bs with each

A; one A with each B

A B
** Zero or more Bs with each

A; ditto As with each B

A B
2..51

A B
*

Two to Five Bs with each
A; one A with each B

Zero or more Bs with each
A; B knows nothing about A

18Tuesday, September 4, 2007

Relationships: whole-part
Associations can also convey semantic information
about themselves

In particular, aggregations indicate that one object
contains a set of other objects

think of it as a whole-part relationship between

a class representing a group of components

a class representing the components

Notation: aggregation is indicated with a white
diamond attached to the class playing the former role

19Tuesday, September 4, 2007

Example: Aggregation
Composition

Book

Section

Chapter

Aggregation

Crate

Bottle

Composition will
be defined on the

next slide

20Tuesday, September 4, 2007

Semantics of Aggregation
Aggregation relationships are transitive

if A contains B an B contains C, then A contains C

Aggregation relationships are asymmetric

If A contains B, then B does not contain A

A variant of aggregation is composition which adds the
property of existence dependency

if A composes B, then if A is deleted, B is deleted

Composition relationships are shown with a black
diamond attached to the composing class

21Tuesday, September 4, 2007

Relationships: Qualification
An association can be qualified with information that
indicates how objects on the other end of the
association are found

This allows a designer to indicate that the association
requires a query mechanism of some sort

e.g., an association between a phonebook and its
entries might be qualified with a name, indicating that
the name is required to locate a particular entry

Notation: a qualification is indicated with a rectangle
attached to the end of an association indicating the
attributes used in the query

22Tuesday, September 4, 2007

Qualification Example

EntryPhoneBook name

23Tuesday, September 4, 2007

Relationships: Interfaces
A class can indicate that it implements an interface

An interface is a type of class definition in which only
method signatures are defined

A class implementing an interface provides method
bodies for each defined method signature

This allows a class to offer multiple types of services
that are independent of its inheritance relationships

Other classes can then access a class via an interface

This is indicated via a “ball and socket” notation

24Tuesday, September 4, 2007

Example: Interfaces
Dog

location

food type

roam()

eat()

makeNoise()

Pet

Dog

location

food type

roam()

eat()

makeNoise()

Pet

Person

25Tuesday, September 4, 2007

Class Summary
Classes are blue prints used to create objects

Classes can participate in multiple relationship types

inheritance

association

associations have multiplicity

aggregation/composition

qualification

interfaces

26Tuesday, September 4, 2007

Coming Up Next
Lecture 4: Object Fundamentals, Part 3

Lecture 5: Great Software

Read Chapter 1 of the OO A&D book

27Tuesday, September 4, 2007

