Object Fundamentals

Kenneth:NVEEAnderson

Eniversity:of:Golorado, -Boulder

Coll4446/6448 — Lecture 2 — 08/30/2007

| ecture Goals

® |ntroduce basic concepts, terminology, and notations
for object-oriented analysis,; design, and programming

x A benefit of the OO approach is that the same
concepts appear in-all-three stages of development

® Start with material presented in-Appendix || of your
textbook

x Continue (in lecture 3) with additional material from
previous versions of this class as well as from Head
First Java by Sierra & Bates, © O'Rellly, 2003

x \Will present examples and code throughout

Thursday, August 30, 2007

BIg Picture View

x OO technigues view software systems as
® systems of communicating:objects
® Fach object is an instance of a class
® All olbjects of a class share similar features
= atirioutes
® - mMethods
® (Classes can be specialized by subclasses

x Objects communicate by sending messages

Thursday, August 30, 2007 3

Welcome to Objectville

® \What were the major concepts discussed: in
Appendix |l of the textbook?

Welcome to Objectville

® \What were the major concepts discussed: in
Appendix |l of the textbook?

x Unified Modeling LLanguage (UML)

Thursday, August 30, 2007

Welcome to Objectville

® \What were the major concepts discussed: in
Appendix |l of the textbook?

x Unified Modeling LLanguage (UML)

x Class Diagrams

Thursday, August 30, 2007

Welcome to Objectville

® \What were the major concepts discussed: in
Appendix |l of the textbook?

x Unified Modeling LLanguage (UML)
x Class Diagrams

% [nheritance

Thursday, August 30, 2007

Welcome to Objectville

® \What were the major concepts discussed: in
Appendix |l of the textbook?

x Unified Modeling LLanguage (UML)
x Class Diagrams
® [nheritance

® Polymorphism

Thursday, August 30, 2007

Welcome to Objectville

® \What were the major concepts discussed: in
Appendix |l of the textbook?

x Unified Modeling LLanguage (UML)
x Class Diagrams

® |nheritance

® Polymorphism

® Encapsulation

Thursday, August 30, 2007

UML

= UML stands for Unifled:Moaeling:Eangtiage

x UML defines a standard set of notations for use in
modeling object-oriented systems

® [hroughout the semester we willkencounter UML In
the form of

® class diagrams

® sequence/collalboration diagrams

® state diagrams

® activity diagrams, use case diagrams, and more

Thursday, August 30, 2007 5

Class Diagrams

getSpeed(): int

setSpeed(int)

Thursday, August 30, 2007

Class Diagrams

getSpeed(): int

setSpeed(int)

A class Is represented as a rectangle

Thursday, August 30, 2007

Class Diagrams

Class Name

getSpeed(): int
setSpeed(int)

A class Is represented as a rectangle

Thursday, August 30, 2007

Class Diagrams

Class Name

.

Attributes S
(member variables)

getSpeed(): int
setSpeed(int)

A class Is represented as a rectangle

Thursday, August 30, 2007

Class Diagrams

Class Name

.

Attributes S
(member variables)

getSpeed(): int
setSpeed(int)

Methods

A class Is represented as a rectangle

Thursday, August 30, 2007

Class Diagrams

Class Name

\ except the class

Attributes S
(member variables)

getSpeed(): int
setSpeed(int)

Methods

A class Is represented as a rectangle

All parts are opt

onal

aime

Thursday, August 30, 2007

Class Diagrams

All parts are optional
Class Name A P

\ except the class name

Attributes Airplane

(member variable?’
getSpeed(): int

/ setSpeed(int)

Methods

A class Is represented as a rectangle

This rectangle says that there is a class called Airplane that
could potentially have many instances, each with its own

speed variable and methods to access it

Thursday, August 30, 2007

Translation to Code

® Class diagrams can be translated into code in a fairly
straightforward manner

® Define the class with the specified name

® Define specified attributes (assume private access)

x Define specified method skeletons (assume public)
® May have to deal with unspecified information

® [ypes are optional in class diagrams

® Class diagrams typically do not specify constructors

® constructors are used to Initialize an object

Thursday, August 30, 2007

Alrplane in Java

public class Airplane {
private int speed;
public Airplane(int speed) {

this.speed = speed;
}

OO ~J1 & U1 & LW DO -

public int getSpeed() {
return speed;

}

public void setSpeed(int speed) {
this.speed = speed;

}

Thursday, August 30, 2007

Alrplane in Python

class Airplane(object):

def 1nit (self, speed):
self.speed = speed

def getSpeed(self):
return self.speed;

def setSpeed(self, speed):
self.speed = speed

1
2
3
4
5
6
7
8
9
0

-

Thursday, August 30, 2007 9

Alrplane In Ruby

class Airplane
attr accessor
def i1nitialize(speed)

@speed = speed
end

1
2
3
4
5
6
7
8
9

Thursday, August 30, 2007

Using these Classes’?

® [he materials for this lecture contains source code that
shows how to use these classes

®x Demonstration
= Alrplane:java;:Alrplane:py,Airplane:ro
® Be sure to attempt to run these examples on your own

[t will be good experience to learn how to run Java,
Python, and Ruby: programs on your personal
machine or on a Lab machine (either ITS or CSEL)

Thursday, August 30, 2007

INnheritance

® |nheritance refers to the ability of one class to inherit
oehavior from another class

® and change that behavior it needed

: . getSpeed(): int
Inheritance lets you builo setSpeed(int)

classes based on other
asses and avolid duplicating

and repeating code

accelerate()

®

Thursday, August 30, 2007

INheriting From Alrplane

Note:

public class Jet extends Airplane {

extends keyword
private static final int MULTIPLIER = 2; indicates inheritance

public Jet(int id, int speed) { stper()-and-super
super(id, speed); keyword IS used to refer
} to superclass

00O o Ul WD K

public void setSpeed(int speed) { NO need to define

super.setSpeed(speed * MULTIPLIER); MMecIeCECliRICIglOlOHIE
} inherited!

public void accelerate() { SetSpged%n;etho;j :

) setSpeed() in Airplane
subclass can define new
behaviors, such as
accelerate()

Thursday, August 30, 2007

INheritance In Python

class Jet(Airplane):
MULTIPLIER = 2

def 1init (self, id, speed):
super (Jet, self). 1init (id, speed)

1
2
3
4
5
6
7
8

def setSpeed(self, speed):
super (Jet, self).setSpeed(speed * Jet.MULTIPLIER)

def accelerate(self):
super (Jet, self).setSpeed(self.getSpeed() * 2);

Thursday, August 30, 2007 14

INheritance In Ruby

class Jet < Airplane
@@MULTIPLIER = 2

def initialize(id, speed)
super (id, speed)
end

00 o O s LW IDN B

def speed=(speed)
super (speed * @EMULTIPLIER)

end

def accelerate()
@speed = @speed * 2
end

Thursday, August 30, 2007

Polymorphism: “Many Forms®

® From the textbook: “VWhen one class inherits from
another, then polymorphism- allows a subclass to stand
in for the superclass.”

® |mplication: both of these are legal statements

x Airplane plane = new: Airplane()

x Airplane plane = new Jet()

® Any code that uses the “pla

an Alirplane... this
will run-unchangec

orovides -

ne” variable will treat it as
lexibllity, since that code

recompiled; when

new Airpl

“Indeed It doesn’t even need to be

ane subclasses are created

Thursday, August 30, 2007

Encapsulation

® Encapsulation is

® When you hide parts of your data from the rest of
your application

® and limit the ability for other parts of your code 1o
access that data

® Encapsulation lets you protect information in your
objects from being used incorrectly

Thursday, August 30, 2007

Encapsulation Example

= [he “speed” iInstance
variable 1s private in
Alrplane. That means that
Jet doesn’t have direct
access to It.

Airplane

public void setSpeed(int speed) {
this.speed = speed;
}

1
2
3
4
5
6
7
8

e}

Jet

[
o

x Nor does any: client of
Alrplane or Jet objects

[
-

public void setSpeed(int speed) {
super.setSpeed(speed * MULTIPLIER);
}

el
U W N

x |magine if we changed
speed’s visibility to public

[
(o))

x [he encapsulation of Jet's
setSpeed() method would
be destroyed

Demonstration

Thursday, August 30, 2007

Summary

OO software Is a system of communicating objects

UML provides standard notations for documenting the
structure of OO systems

Classes define the features of objects, both their data and
behavior

Inheritance allows classes to share behavior and avold
duplicating/repeating code

Polymorphism allows a subclass to stand in for its
sSuperclass

Encapsulation occurs when you hide one part of your code
from some other part of your code, thereby protecting it

Thursday, August 30, 2007

Coming Up Next

® | ecture 3: Object Fundamentals Continued
®x No reading assignment

x Note: Lecture 3 will-repeat some of the things
mentioned in this lecture

n | ecture 4: Great Software

x Read Chapter 1 of the OO A&D book

Thursday, August 30, 2007

