
Object Fundamentals
Kenneth M. Anderson

University of Colorado, Boulder

CSCI 4448/6448 — Lecture 2 — 08/30/2007

1Thursday, August 30, 2007

Lecture Goals
Introduce basic concepts, terminology, and notations
for object-oriented analysis, design, and programming

A benefit of the OO approach is that the same
concepts appear in all three stages of development

Start with material presented in Appendix II of your
textbook

Continue (in lecture 3) with additional material from
previous versions of this class as well as from Head
First Java by Sierra & Bates, © O'Reilly, 2003

Will present examples and code throughout

2Thursday, August 30, 2007

Big Picture View
OO techniques view software systems as

systems of communicating objects

Each object is an instance of a class

All objects of a class share similar features

attributes

methods

Classes can be specialized by subclasses

Objects communicate by sending messages

3Thursday, August 30, 2007

Welcome to Objectville
What were the major concepts discussed in
Appendix II of the textbook?

4Thursday, August 30, 2007

Welcome to Objectville
What were the major concepts discussed in
Appendix II of the textbook?

Unified Modeling Language (UML)

4Thursday, August 30, 2007

Welcome to Objectville
What were the major concepts discussed in
Appendix II of the textbook?

Unified Modeling Language (UML)

Class Diagrams

4Thursday, August 30, 2007

Welcome to Objectville
What were the major concepts discussed in
Appendix II of the textbook?

Unified Modeling Language (UML)

Class Diagrams

Inheritance

4Thursday, August 30, 2007

Welcome to Objectville
What were the major concepts discussed in
Appendix II of the textbook?

Unified Modeling Language (UML)

Class Diagrams

Inheritance

Polymorphism

4Thursday, August 30, 2007

Welcome to Objectville
What were the major concepts discussed in
Appendix II of the textbook?

Unified Modeling Language (UML)

Class Diagrams

Inheritance

Polymorphism

Encapsulation

4Thursday, August 30, 2007

UML
UML stands for Unified Modeling Language

UML defines a standard set of notations for use in
modeling object-oriented systems

Throughout the semester we will encounter UML in
the form of

class diagrams

sequence/collaboration diagrams

state diagrams

activity diagrams, use case diagrams, and more

5Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

6Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

6Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

Class Name

6Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

Class Name

Attributes
(member variables)

6Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

Class Name

Attributes
(member variables)

Methods

6Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

Class Name

Attributes
(member variables)

Methods

All parts are optional
except the class name

6Thursday, August 30, 2007

Class Diagrams

getSpeed(): int
setSpeed(int)

speed: int
Airplane

A class is represented as a rectangle

Class Name

Attributes
(member variables)

Methods

All parts are optional
except the class name

This rectangle says that there is a class called Airplane that
could potentially have many instances, each with its own

speed variable and methods to access it

6Thursday, August 30, 2007

Translation to Code
Class diagrams can be translated into code in a fairly
straightforward manner

Define the class with the specified name

Define specified attributes (assume private access)

Define specified method skeletons (assume public)

May have to deal with unspecified information

Types are optional in class diagrams

Class diagrams typically do not specify constructors

constructors are used to initialize an object

7Thursday, August 30, 2007

Airplane in Java
public class Airplane {1

 2

 private int speed;3

 4

 public Airplane(int speed) {5

 this.speed = speed;6

 }7

 8

 public int getSpeed() {9

 return speed;10

 }11

 12

 public void setSpeed(int speed) {13

 this.speed = speed;14

 }15

16

}17

8Thursday, August 30, 2007

Airplane in Python
class Airplane(object):1

 2

 def __init__(self, speed):3

 self.speed = speed4

 5

 def getSpeed(self):6

 return self.speed;7

 8

 def setSpeed(self, speed):9

 self.speed = speed10

9Thursday, August 30, 2007

Airplane in Ruby

class Airplane1

2

 attr_accessor :speed3

4

 def initialize(speed)5

 @speed = speed6

 end7

 8

end9

10Thursday, August 30, 2007

Using these Classes?
The materials for this lecture contains source code that
shows how to use these classes

Demonstration

Airplane.java, Airplane.py, Airplane.rb

Be sure to attempt to run these examples on your own

It will be good experience to learn how to run Java,
Python, and Ruby programs on your personal
machine or on a Lab machine (either ITS or CSEL)

11Thursday, August 30, 2007

Inheritance
Inheritance refers to the ability of one class to inherit
behavior from another class

and change that behavior if needed

getSpeed(): int
setSpeed(int)

speed: int
Airplane

accelerate()
MULTIPLIER: int

Jet

Inheritance lets you build
classes based on other
classes and avoid duplicating
and repeating code

12Thursday, August 30, 2007

Inheriting From Airplane
public class Jet extends Airplane {1

2

 private static final int MULTIPLIER = 2;3

 4

 public Jet(int id, int speed) {5

 super(id, speed);6

 }7

 8

 public void setSpeed(int speed) {9

 super.setSpeed(speed * MULTIPLIER);10

 }11

 12

 public void accelerate() {13

 super.setSpeed(getSpeed() * 2);14

 }15

16

}17

18

Note:

extends keyword
indicates inheritance

super() and super
keyword is used to refer
to superclass

No need to define
getSpeed() method; its
inherited!

setSpeed() method
overrides behavior of
setSpeed() in Airplane

subclass can define new
behaviors, such as
accelerate()

13Thursday, August 30, 2007

Inheritance in Python
class Jet(Airplane):1

 2

 MULTIPLIER = 23

4

 def __init__(self, id, speed):5

 super(Jet, self).__init__(id, speed)6

7

 def setSpeed(self, speed):8

 super(Jet, self).setSpeed(speed * Jet.MULTIPLIER)9

10

 def accelerate(self):11

 super(Jet, self).setSpeed(self.getSpeed() * 2);12

13

14Thursday, August 30, 2007

Inheritance in Ruby
class Jet < Airplane1

2

 @@MULTIPLIER = 23

4

 def initialize(id, speed)5

 super(id, speed)6

 end7

8

 def speed=(speed)9

 super(speed * @@MULTIPLIER)10

 end11

12

 def accelerate()13

 @speed = @speed * 214

 end15

16

end17

18

15Thursday, August 30, 2007

Polymorphism: “Many Forms”
From the textbook: “When one class inherits from
another, then polymorphism allows a subclass to stand
in for the superclass.”

Implication: both of these are legal statements

Airplane plane = new Airplane()

Airplane plane = new Jet()

Any code that uses the “plane” variable will treat it as
an Airplane… this provides flexibility, since that code
will run unchanged, indeed it doesn’t even need to be
recompiled, when new Airplane subclasses are created

16Thursday, August 30, 2007

Encapsulation
Encapsulation is

when you hide parts of your data from the rest of
your application

and limit the ability for other parts of your code to
access that data

Encapsulation lets you protect information in your
objects from being used incorrectly

17Thursday, August 30, 2007

Encapsulation Example
The “speed” instance
variable is private in
Airplane. That means that
Jet doesn’t have direct
access to it.

Nor does any client of
Airplane or Jet objects

Imagine if we changed
speed’s visibility to public

The encapsulation of Jet’s
setSpeed() method would
be destroyed

Airplane1

2

...3

public void setSpeed(int speed) {4

 this.speed = speed;5

}6

...7

8

Jet9

10

...11

public void setSpeed(int speed) {12

 super.setSpeed(speed * MULTIPLIER);13

}14

...15

16

Demonstration

18Thursday, August 30, 2007

Summary
OO software is a system of communicating objects

UML provides standard notations for documenting the
structure of OO systems

Classes define the features of objects, both their data and
behavior

Inheritance allows classes to share behavior and avoid
duplicating/repeating code

Polymorphism allows a subclass to stand in for its
superclass

Encapsulation occurs when you hide one part of your code
from some other part of your code, thereby protecting it

19Thursday, August 30, 2007

Coming Up Next
Lecture 3: Object Fundamentals Continued

No reading assignment

Note: Lecture 3 will repeat some of the things
mentioned in this lecture

Lecture 4: Great Software

Read Chapter 1 of the OO A&D book

20Thursday, August 30, 2007

