
Lecture 18 1

Lecture 18: Petri-Nets
(Continued)

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 1999

Lecture 18 2

Today’s Lecture

• Finish the Filling Station Example

• Look at analysis techniques using Petri Nets

• Look at extensions to the basic Petri Net
formalism
– add “data” to tokens

– add “conditionals” to transitions

Lecture 18 3

Filling Station Example

• Lets model the following situation
– Fuel Pumps

– Spaces next to Pumps

– A cashier that takes payment

• Questions
– What is the concurrency that we want modeled?

– How do we handle the parameterization of the
Petri net? (e.g. lets say I want to add a pump)

Lecture 18 4

Concurrency Problems

• Starvation
 Enabled transition never fired

• Deadlock
 Unintended lack of enabled transitions

• V&V Tries to Detect These Problems
 Static and dynamic analysis techniques

Lecture 18 5

Shortcoming of Basic Petri Nets

Would Like…
– Enable and fire as computations

– Tokens as data, not just control

Simplicity of building blocks leads to
complexity in nets

Example: Semaphore for n processes requires
 2n transitions and 3n+1 places

Lecture 18 6

Higher-Level Petri Nets

• Some Enhancements to Basic Petri Nets
– Typed places and information-bearing tokens

– Predicate transitions

– Hierarchical decomposition of places and
transitions

Requirement for analysis of higher-level nets:
reducible to basic nets for analysis

Lecture 18 7

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

s > 0

s - 1

Lecture 18 8

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

token
value

s > 0

s - 1

Lecture 18 9

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

transition
predicate

token
value

s > 0

s - 1

Lecture 18 10

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

transition
predicate

token
value

arc
expression

s > 0

s - 1

Lecture 18 11

Higher-Level Net
p

p

p

p

s

s

s + 1
true

19
71

3

transition
predicate

token
value

arc
expression

s > 0

s - 1

Lecture 18 12

Execution Model

• “Enable” is a Predicate on Input Tokens
– Transition with k input places is enabled if there

exists a k-tuple of tokens, one at each input
place, that satisfy the predicate; called a ready
tuple

– Enabled transition and ready tuple are
nondeterministically selected

– Tokens of selected ready tuple removed at
firing

Lecture 18 13

Execution Model

• Function Computes Output Token Values
– Transition with h output places uses the

function to compute h values, one for each
output token

Lecture 18 14

Higher-Level Net Semaphore
p

p

p

p

s

s

s + 1
true

19
71

3

s > 0

s - 1

Lecture 18 15

Enabled Transition
p

p

p

p

s

s

s + 1

s > 0

true

19
71

3s - 1

Lecture 18 16

After Firing
p

p

p

p

s

s

s + 1
true

19

2
71

s > 0

s - 1

Lecture 18 17

Enabled Transitions
p

p

p

p

s

s

s + 1
true

19

2
71

s > 0

s - 1

Lecture 18 18

After Firing
p

p

p

p

s

s

s + 1
true

19
71

1

s > 0

s - 1

Lecture 18 19

Enabled Transition
p

p

p

p

s

s

s + 1

119
71

true

s > 0

s - 1

Lecture 18 20

After Firing
p

p

p

p

s

s
s - 1

s + 1

2

19

71

true

s > 0

