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Today’s Lecture

• Finish the Filling Station Example

• Look at analysis techniques using Petri Nets

• Look at extensions to the basic Petri Net
formalism
– add “data” to tokens

– add “conditionals” to transitions
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Filling Station Example

• Lets model the following situation
– Fuel Pumps

– Spaces next to Pumps

– A cashier that takes payment

• Questions
– What is the concurrency that we want modeled?

– How do we handle the parameterization of the
Petri net? (e.g. lets say I want to add a pump)
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Concurrency Problems

• Starvation
 Enabled transition never fired

• Deadlock
 Unintended lack of enabled transitions

• V&V Tries to Detect These Problems
 Static and dynamic analysis techniques
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Shortcoming of Basic Petri Nets

Would Like…
– Enable and fire as computations

– Tokens as data, not just control

Simplicity of building blocks leads to
complexity in nets

Example: Semaphore for n  processes requires
    2n  transitions and 3n+1  places
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Higher-Level Petri Nets

• Some Enhancements to Basic Petri Nets
– Typed places and information-bearing tokens

– Predicate transitions

– Hierarchical decomposition of places and
transitions

Requirement for analysis of higher-level nets:
reducible to basic nets for analysis
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Execution Model

• “Enable” is a Predicate on Input Tokens
– Transition with k input places is enabled if there

exists a k-tuple of tokens, one at each input
place, that satisfy the predicate; called a ready
tuple

– Enabled transition and ready tuple are
nondeterministically selected

– Tokens of selected ready tuple removed at
firing
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Execution Model

• Function Computes Output Token Values
– Transition with h output places uses the

function to compute h values, one for each
output token
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Higher-Level Net Semaphore
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