Lecture 16 Finite State Machines (continued) Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester, 1999	 Today's Lecture Continue to explore issues related to Finite State Machines Present a FSM-like language called SDL Discuss Homework 2
Lecture 16 1	Lecture 16 2
Advantages of FSM Model • Simple • Obvious graphical representation	Shortcomings of FSM Model • Theoretical Limit on Computational Power FSM has no "memory"
 Easy to Build Support Tools Transformers Transform FSM Model into other representations Analyzers Will this FSM run forever? Is it possible for it to halt? Are the state sequences infinite? 	 State Space Explosion for Large Problems State Space Explosion for Composed FSMs States are multiplicative Inherently Synchronous FSM in single, global state at each time instant

Levels of Complexity

- Turing Machine
 - Unbounded tape
- Linear-Bounded Automata – Bounded tape
- Push-Down Automata
 stack
- Finite State Machines

Lecture 16

 limited computational power but its simple to understand and program Programming Languages

- Execution Semantics
- Context Sensitive Langs.
 - Language Semantics
- Context Free Grammars
 Syntax

5

- Regular Expressions
 - Lexical Structure

An FSM-Based Tool: SDL

- Used Widely for Telephony Applications
- Extended FSMs
 - Modularity
 - Channel
- Tools
 - Analysis
 - Simulation
 - Code-generation

Lecture 16

Producer/Consumer Example

Homework 2

- Use a Finite State Machine and a Petri Net to specify the cruise control system of an automobile
 - Retrieve the assignment from the Website
 - Start on the FSM part now! (Don't wait!)
 - We will discuss Petri Nets next week
 - You will have the weekend to work on the Petri Net part before turning the assignment in

6