
Lecture 15 1

Lecture 15
Operational Specifications

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 1999

Lecture 15 2

Today’s Lecture

• Continue to discuss the Make example
– It illustrates each of the three specification

styles introduced in lecture 12

• Begin to explore Operational Specifications
in more detail

Lecture 15 3

The Make Example

• Lecture 12
– We worked on an example specifying some

properties of Make

• However, Make is a specification language
itself
– It specifies dependencies between artifacts

– It specifies rules for creating new artifacts

– It specifies actions to carry out the rules

Lecture 15 4

Make Specification Language

• Dependencies are Relational
– Described according to desired relationships

– Usually given in terms of multi/hyper graphs

• Rules are Declarative
– Described according to desired properties

– Usually given in terms of axioms or algebras

• Actions are Imperative
– Described according to desired actions

– Usually given in terms of an execution model

Lecture 15 5

More on Make

• Make is well-integrated into a Unix/C
environment
– Primitive Components are Files

– Actions are “shell commands”

– Rules are placed in a file and denote the
“specification”

• Rules make explicit the dependencies of the system
and what to do about them

Lecture 15 6

Example “Makefile”

T1: T2 T3 T4
 A1 A2 A3

T2: T5 T6
 A4

T3: T5 T7
 A5 A6

Target

Actions

Dependencies

Rules

Lecture 15 7

T1

T2 T3 T4

T5 T6 T7

… and shared dependencies!

Rules can have interdependencies

Lecture 15 8

Questions

• What is the concept of dependence in this
system? How is it modeled?

• Why are rules considered declarative?

Lecture 15 9

Hybrid Style Issues

• Consider programming languages
– They are primarily operational

• What about them are declarative or relational?

• Most languages will have a chief modeling style
– Contrast statements in a program with Make’s

• S1 S2 S3… operational, do these statements in this order

• Rules in a makefile: declarative, achieve this target

– One style will lead you to ask different sorts of
questions than with another style

• Is there a unique way to achieve the target? Is a target feasible?

Lecture 15 10

Operational Specification

• Focuses on Control Aspects
– Here we choose to look at control issues rather than

data issues

• Examples
– Control the flight path of an airplane

– Control the speed of a car

• Of course, there are data aspects to these
problems. However we view them more as
parameters that influence the actions of the system

Lecture 15 11

Formalisms and Foundations

• Formalisms
– Finite State Machines (FSMs)

– Petri Nets

– Statecharts - used in UML

– Communicating Sequential Processes (CSP)
• Latter three are different attempts to add concurrency to FSMs

• Mathematical Foundations
– Graph theory, automata theory, modal logic

Lecture 15 12

Finite State Machines (FSMs)

• Formal Definition
M = {Q,I,δ}, where

Q is a finite set of states

I is a finite set of inputs
δ is a transition function

δ : Q × I → Q

δ can be a partial function

Lecture 15 13

Finite State Machines (FSMs)

• Graph Representation
– Nodes represent states

– Arcs are directed and labeled with element of I

– Arc labeled i goes from state q1 to state q2

 iff δ(q1,i) = q2

Lecture 15 14

Finite State Machines (FSMs)

• Execution Model
– Machine in some state
– Input causes state change according to δ

• Common Extensions
– Start states and stop states

– Output generated upon state transition

Lecture 15 15

Advantages of FSM Model

• Simple

• Obvious graphical representation

• Easy to Build Support Tools
– Transformers

• Transform FSM Model into other representations

– Analyzers
• Will this FSM run forever? Is it possible for it to

halt? Are the state sequences infinite?

