	Today's Lecture
Lecture 14: Temporal Logic Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester, 1999	• Discuss Temporal Logic in depth
Lecture 14 1	Lecture 14 2
Temporal Logic	Example
 In classical logic, a predicate's truth value is static; for a given interpretation it is always true or always false In real-life situations, implications are causal if P and P ⇒ Q then Q We need P to be true at one point, then if an event causes P ⇒ Q to be true, then at the next point, we need P to be false and Q to be true Think of it in terms of states. S1: P is true, S2: Q is true 	 P: "the train is approaching the gate" P ⇒ Q: "if the train approaches the gate, the gate is lowered" Q: "the gate is lowered before the train is in the gate R: "the gate remains closed until the train crosses the gate" We cannot formalize these statements in propositional or predicate logic
Lecture 14 3	Lecture 14 4

Concurrent and Reactive Systems

- A reactive program is one that continuously maintains an ongoing interaction with the environment controlled by it.
 - Reactive systems may be concurrent and may have to obey strict timing constraints
 - For example, "train approaching gate" and "gate lowering" are concurrent activities

Relevant properties

- safety: "something bad will not happen"
- Example
 - "the gate will remain closed while a train crosses the gate"
- safety properties
 - partial correctness
 - mutual exclusion
 - deadlock-freedom

- liveness: "something good will eventually happen"
- Example
 - "whenever the gate is directed to raise, it will eventually do so"
- liveness properties
 - program termination
 - starvation-freedom

Lecture 14	5	Lecture 14	6

7

Notions of Time

- Underlying model for time must match the system's requirements
- Temporal logic does not try to define time, only operators that denote change and ordering

• Types of Time

- Discrete or Continuous
- Linear and Branching

Lecture 14

Discrete or Continuous

- When operations are continuously varying, a dense model of time is appropriate
 - The topology of time in this instance is typically a proper subset of real numbers
- If properties are only present at certain time instants, then a discrete model of time is chosen
 - In this case, the topology is mapped into a subset of the natural numbers
- These models can be bounded and can also be broken into distinct intervals

Lecture 14

Linear and Branching Time Models

- for any given moment in time
 - one may postulate one future time (linear) or several possible future times (branching)
- branching

Lecture 14

- useful for modeling uncertainty (i.e. alternatives can be considered)
- We are going to study discrete linear temporal logic

The specification hierarchy

- Temporal logic can be used to specify requirements, design, and programs
 - Requirements
 - behavior model; time constraints between predicates
 - Design
 - state changes within objects can be specified
 - Programs
 - state changes for entire programs

Lecture 14

Common techniques

- After an object's state is specified
 - Specify formulas for properties that hold over
 - (a) all sequences of all states
 - (b) some sequence of states
 - (c) some future state in some sequence of states
- With respect to program states
 - Temporal logic formulas can specify properties
 - that hold over (subsets of) executions of the program

Temporal Logic: Syntax

- Vocabulary
 - constants, functions, propositions, states, and predicates
- It also includes
 - constant values
 - boolean constants, natural numbers,
 ε (empty string or list), Ø (empty set)
 - function symbols
 - +, -, \cup , \cap
 - predicate symbols

• >,
$$\leq$$
, \subset , \in

9

Lecture 14

10

Syntax and Semantics, continued

- = (assumed defined for all types)
- A well-formed formula of predicate logic is also a well-formed formula of temporal logic
 - Temporal Logic adds
 - a sequence of states: $S_1, S_2, ..., S_n$
 - a function that assigns to each state, a set of predicates that are true for that state
 - Temporal Logic defines three new operators
 - \Box (always), \diamondsuit (eventually), and O (next)

Lecture 14			

Syntax and Semantics, continued

- Additional Well-Formed Formula Rules
 - If f is a well-formed formula, then so are
 - $\neg(f)$, $\Box(f)$, $\diamondsuit(f)$, and O(f)
 - $-\,$ If f and g are well-formed formulas, then so are
 - $(f \land g), (f \lor g), (f \Rightarrow g), and (f \equiv g)$
- Examples
 - $-\Box(f \Rightarrow O(g))$
 - $\exists q \bullet (head(s) = q) \land \diamondsuit (head(s) = q + 1)$
 - $\Box(p) \land \diamondsuit(q) \Rightarrow \Box(p \Rightarrow O(r))$

Lecture 14

14

Types of Temporal Logic

- Use of only propositions
 - propositional linear temporal logic
- Use of quantifiers and predicates
 - first-order linear temporal logic

Interpretation of Temporal Logic

- An atomic action causes a state change
- A state history is notated:
 - $-\sigma: S_1, S_2, ..., S_n$
 - It represents the behavior of an object.
 - These states can correspond to either abstract object states in a design or to concrete states in a program.
 - In order to verify whether the behavior has a property as represented by a formula f, we interpret the formula over the given state history.

13

Interpretation, continued	Interpretation, continued			
 The value of a variable (expression, predicate,) for a given state is notated s[x], s[e], s[p], s[f] To evaluate formulas without temporal operators Step 1: evaluate expressions Assign values to all free variables Step 2: evaluate predicates For a predicate P(t1, t2,), define s[P] = P(s[t1], s[t2],) For formulas, s[¬p] = ¬s[p], s[p ∧ q] = s[p] ∧ s[q], etc. 	 To evaluate formulas without temporal operators Step 3: evaluate quantified formulas s[∀ x • p] = ∀ x • s[p] s[∃ x • p] = ∃ x • s[p] Example state s = (x=-1, y=3, z=1) formula (x+y>z) ⇒ (y ≤ 2 * z) s[(x+y>z) ⇒ (y ≤ 2 * z)] = (s[x]+s[y]>s[z]) ⇒ (s[y] ≤ 2 * s[z]) = (-1 + 3 > 1) ⇒ (3 ≤ 2 * 1) = (true ⇒ false) (This expression thus evaluates to false for state s) 			
Semantics of Temporal Formulas	Examples			
 □P P always hold □P holds at S_j iff P holds at all states S_k, k≥ j ◇P P holds sometimes ◇P holds at S_j iff P holds at some state S_k, k≥ j OP P holds at the next instant OP holds at S_j iff P holds at state S_{j+1} 	 □(lost(x) ⇒ ¬instacks(x)) A lost book is not on the stacks □(inc(x) ⇒ □inc(x)) Once x is incremented, then it is incremented in every state thereafter O □(x = 1) ⇒ (< □(y=0) ∧ <(z = 1)) If at the next step, x becomes permanently 1, then eventually y becomes permanently zero and z eventually becomes 1 			
Lecture 14 19	Lecture 14 20			

Returning to the Train example Train example, continued • Propositions • Assume - G1: the gate is lowered $-\sigma$: S0, S1, ... where - G2: the gate is closed • S0: G1 \wedge T1 is true (Gate is lowered) - G3: the gate is raised • S1: G2 \wedge T1 is true (Gate is closed) - G4: the gate is open • S2, S3: G2 \wedge T2 is true (Train is crossing) - T1: the train is approaching • S4: G2 \wedge T3 is true (Gate is closed) - T2: the train is crossing the gate • S5: G3 \wedge T3 is true (Gate is raised) - T3: the train has crossed the gate • S6, ...: G4 \wedge T3 is true (Gate is open) Lecture 14 21 Lecture 14 22 Train example, continued Additional Temporal Operators

- We can conclude the following
- \diamond (G2) is true for states 0, 1, 2, 3, 4; otherwise not
- O(G2) is true for states 0, 1, 2, 3; otherwise not
- \Box (G4) is false for states 0-5, and true thereafter
- \Box (T3) is true for all states ≥ 4
- $\Box(T3 \Rightarrow \diamond G4)$
 - The gate will eventually open, after the train has crossed
- □�(G4)
 - There are an infinite number of states where the gate is open
- $\diamond \Box(\neg T1 \Rightarrow G4)$
 - There exists a state where the proposition holds for all later states

Lecture 14

23

- Until
 - P holds continuously at least until the first occurrence of Q
- Waiting-For
 - P holds forever or until the first occurrence of Q
- Since
 - Q has happened at sometime in the past and P has continuously held ever since
- Once
 - P has happened at sometime in the past
- I don't have the correct font for the symbols of these operations, instead I will use their name in place of their symbol in formulas

Frequently used Formulas	Examples
 f⇒\$ g If f at one state, then eventually g □(f⇒\$ g) Holds for all states □(f⇒\$ Og) If f is true at state n, then g is true in state n+1, f is true at state 0 □(f ⇒ f Until g) Where f is true, f continues to remain true until g becomes true □(f ⇒ Once g) In every state where f is true, it was preceded by a state where g is true 	 We will now work through some examples on paper Library Books Communication Channels A thread-safe queue