
Lecture 14 1

Lecture 14: Temporal Logic

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 1999

Lecture 14 2

Today’s Lecture

• Discuss Temporal Logic in depth

Lecture 14 3

Temporal Logic

• In classical logic, a predicate’s truth value is static;
for a given interpretation it is always true or
always false

• In real-life situations, implications are causal
– if P and P ⇒ Q then Q

– We need P to be true at one point, then if an event
causes P ⇒ Q to be true, then at the next point, we need
P to be false and Q to be true

• Think of it in terms of states. S1: P is true, S2: Q is true

Lecture 14 4

Example

• P: “the train is approaching the gate”

• P ⇒ Q: “if the train approaches the gate, the gate is
lowered”

• Q: “the gate is lowered before the train is in the gate

• R: “the gate remains closed until the train crosses the gate”

• We cannot formalize these statements in propositional or
predicate logic

Lecture 14 5

Concurrent and Reactive Systems

• A reactive program is one that continuously
maintains an ongoing interaction with the
environment controlled by it.
– Reactive systems may be concurrent and may

have to obey strict timing constraints

– For example, “train approaching gate” and
“gate lowering” are concurrent activities

Lecture 14 6

Relevant properties

• safety: “something bad
will not happen”

• Example
– “the gate will remain closed

while a train crosses the
gate”

• safety properties
– partial correctness

– mutual exclusion

– deadlock-freedom

• liveness: “something good
will eventually happen”

• Example
– “whenever the gate is

directed to raise, it will
eventually do so”

• liveness properties
– program termination

– starvation-freedom

Lecture 14 7

Notions of Time

• Underlying model for time must match the
system’s requirements

• Temporal logic does not try to define time,
only operators that denote change and
ordering

• Types of Time
– Discrete or Continuous

– Linear and Branching
Lecture 14 8

Discrete or Continuous

• When operations are continuously varying, a
dense model of time is appropriate
– The topology of time in this instance is typically a

proper subset of real numbers

• If properties are only present at certain time
instants, then a discrete model of time is chosen

• In this case, the topology is mapped into a subset of the natural
numbers

• These models can be bounded and can also be
broken into distinct intervals

Lecture 14 9

Linear and Branching Time Models

• for any given moment in time
– one may postulate one future time (linear) or

several possible future times (branching)

• branching
– useful for modeling uncertainty

(i.e. alternatives can be considered)

• We are going to study discrete linear
temporal logic

Lecture 14 10

The specification hierarchy

• Temporal logic can be used to specify
requirements, design, and programs
– Requirements

• behavior model; time constraints between predicates

– Design
• state changes within objects can be specified

– Programs
• state changes for entire programs

Lecture 14 11

Common techniques

• After an object’s state is specified
– Specify formulas for properties that hold over

• (a) all sequences of all states

• (b) some sequence of states

• (c) some future state in some sequence of states

• With respect to program states
– Temporal logic formulas can specify properties

• that hold over (subsets of) executions of the program

Lecture 14 12

Temporal Logic: Syntax

• Vocabulary
– constants, functions, propositions, states, and predicates

• It also includes
– constant values

• boolean constants, natural numbers,
ε (empty string or list), ∅ (empty set)

– function symbols
• +, −, ∪ , ∩

– predicate symbols
• >, ≤, ⊂ , ∈

Lecture 14 13

Syntax and Semantics, continued

• = (assumed defined for all types)

• A well-formed formula of predicate logic is also a
well-formed formula of temporal logic
– Temporal Logic adds

• a sequence of states: S1, S2, …, Sn

• a function that assigns to each state, a set of predicates that are
true for that state

– Temporal Logic defines three new operators
• ¨ (always), ² (eventually), and ¡ (next)

Lecture 14 14

Syntax and Semantics, continued

• Additional Well-Formed Formula Rules
– If f is a well-formed formula, then so are

• ¬ (f), ¨(f), ²(f), and ¡(f)

– If f and g are well-formed formulas, then so are
• (f ∧ g), (f∨ g), (f⇒ g), and (f≡g)

• Examples
– ¨(f ⇒ ¡(g))

– ∃ q•(head(s) = q) ∧ ²(head(s) = q + 1)

– ¨(p) ∧ ²(q) ⇒ ¨(p ⇒ ¡(r))

Lecture 14 15

Types of Temporal Logic

• Use of only propositions
– propositional linear temporal logic

• Use of quantifiers and predicates
– first-order linear temporal logic

Lecture 14 16

Interpretation of Temporal Logic

• An atomic action causes a state change

• A state history is notated:
– σ : S1, S2, …, Sn

– It represents the behavior of an object.
• These states can correspond to either abstract object states in a

design or to concrete states in a program.

– In order to verify whether the behavior has a property
as represented by a formula f, we interpret the formula
over the given state history.

Lecture 14 17

Interpretation, continued

• The value of a variable (expression, predicate, …)
– for a given state is notated

• s[x], s[e], s[p], s[f]

• To evaluate formulas without temporal operators
– Step 1: evaluate expressions

• Assign values to all free variables

– Step 2: evaluate predicates
• For a predicate P(t1, t2, …), define s[P] = P(s[t1], s[t2], …)

• For formulas, s[¬ p] = ¬s[p], s[p ∧ q] = s[p] ∧ s[q], etc.

Lecture 14 18

Interpretation, continued

• To evaluate formulas without temporal operators
– Step 3: evaluate quantified formulas

• s[∀ x • p] = ∀ x • s[p]

• s[∃ x • p] = ∃ x • s[p]

• Example
– state s = (x=-1, y=3, z=1)

– formula (x+y>z) ⇒ (y ≤ 2 * z)

– s[(x+y>z) ⇒ (y ≤ 2 * z)]

– = (s[x]+s[y]>s[z]) ⇒ (s[y] ≤ 2 * s[z])

– = (-1 + 3 > 1) ⇒ (3 ≤ 2 * 1)

– = (true ⇒ false) (This expression thus evaluates to false for state s)

Lecture 14 19

Semantics of Temporal Formulas

• ¨P
– P always hold

• ¨P holds at Sj iff P holds at all states Sk, k≥ j

• ²P
– P holds sometimes

• ²P holds at Sj iff P holds at some state Sk, k≥ j

• ¡P
– P holds at the next instant

• ¡P holds at Sj iff P holds at state Sj+1

Lecture 14 20

Examples

• ¨(lost(x) ⇒ ¬ instacks(x))
– A lost book is not on the stacks

• ¨(inc(x) ⇒ ¨inc(x))
– Once x is incremented, then it is incremented in every

state thereafter

• ¡ ¨(x = 1) ⇒ (² ¨(y=0) ∧ ²(z = 1))
– If at the next step, x becomes permanently 1, then

eventually y becomes permanently zero and z
eventually becomes 1

Lecture 14 21

Returning to the Train example

• Propositions
– G1: the gate is lowered

– G2: the gate is closed

– G3: the gate is raised

– G4: the gate is open

– T1: the train is approaching

– T2: the train is crossing the gate

– T3: the train has crossed the gate

Lecture 14 22

Train example, continued

• Assume
– σ: S0, S1, … where

• S0: G1 ∧ T1 is true (Gate is lowered)

• S1: G2 ∧ T1 is true (Gate is closed)

• S2, S3: G2 ∧ T2 is true (Train is crossing)

• S4: G2 ∧ T3 is true (Gate is closed)

• S5: G3 ∧ T3 is true (Gate is raised)

• S6, …: G4 ∧ T3 is true (Gate is open)

Lecture 14 23

Train example, continued

• We can conclude the following
• ²(G2) is true for states 0, 1, 2, 3, 4; otherwise not

• ¡(G2) is true for states 0, 1, 2, 3; otherwise not

• ¨(G4) is false for states 0-5, and true thereafter

• ¨(T3) is true for all states ≥ 4

• ¨(T3 ⇒ ²G4)

– The gate will eventually open, after the train has crossed

• ¨²(G4)
– There are an infinite number of states where the gate is open

• ²¨(¬T1 ⇒ G4)
– There exists a state where the proposition holds for all later states

Lecture 14 24

Additional Temporal Operators

• Until
– P holds continuously at least until the first occurrence of Q

• Waiting-For
– P holds forever or until the first occurrence of Q

• Since
– Q has happened at sometime in the past and P has continuously held ever

since

• Once
– P has happened at sometime in the past

• I don’t have the correct font for the symbols of these operations,
instead I will use their name in place of their symbol in formulas

Lecture 14 25

Frequently used Formulas

• f ⇒ ²g
– If f at one state, then eventually g

• ¨(f ⇒ ²g)
– Holds for all states

• ¨(f ⇒ ¡g)
– If f is true at state n, then g is true in state n+1, f is true at state 0

• ¨(f ⇒ f Until g)
– Where f is true, f continues to remain true until g becomes true

• ¨(f ⇒ Once g)
– In every state where f is true, it was preceded by a state where g is

true
Lecture 14 26

Examples

• We will now work through some examples
on paper
– Library Books

– Communication Channels

– A thread-safe queue

