Today's Lecture • Two different types of logic systems Lecture 13: Review of Logic – propositional logic - predicate logic Kenneth M. Anderson Foundations of Software Engineering CSCI 5828 - Spring Semester, 1999 1 2 **Propositional Logic** Example • P = "program does not terminate" • A proposition is a statement that is either true or false, but not both • Q = "alarm rings forever" • Propositional Logic is the language of • $P \Rightarrow Q$ (If the program does not terminate propositions then alarm rings forever) - It consists of well-formed formulas constructed $P \Rightarrow 0$ • P O from atomic formulas and logical connectives Ψ Ψ Т - The meaning of a proposition is determined by ΤF F the truth values assigned to its assertions • F T/F Т 3

Formal Language Definition

- terminals = { P, Q, R, ..., \land , \lor , \neg , \Rightarrow , \Leftrightarrow , (,)};
- nonterminals = { atomic formula, sentence };
- atomic formula = $P | Q | R | \dots$;
- sentence = atomic formula | (, sentence,) |
 ¬, sentence | sentence, ∨, sentence |
 sentence, ∧, sentence | sentence, ⇒, sentence |
 sentence, ⇔, sentence;

Example

- sentence
- (sentence)
- (sentence \lor sentence)
- (atomic formula \lor (sentence))
- ($P \lor (\neg \text{ sentence })$)
- ($P \lor (\neg \text{ atomic formula })$)
- $(P \lor (\neg Q))$

5

7

Truth Table

• Defines values of the logical connectives

Ρ	Q	¬Ρ	₽∨Q	P∧Q	P⇒Q	₽⇔Ģ
Т	Т	F	Т	Т	Т	Т
Т	F	F	Т	F	F	F
F	Т	Т	Т	F	Т	F
F	F	Т	F	F	Т	Т

Semantics

- A sentence is true if it evaluates to true after assigning a set of truth values to its atomic propositions
- P and Q are equivalent if they evaluate to the same truth values for every interpretation
 - This is indicated $P \equiv Q$
- A sentence F is satisfiable if it evaluates to true for at least one assignment of truth values, otherwise it is called contradictory

8

Semantics, continued

- If, for a list of sentences L, every assignment that makes the sentences of L true also makes P true, we say that P is a semantic consequence of L
 - This is written: L = P
- A sentence true for all assignments is called a tautology, the reverse is called a contradiction
- All other sentences are called contingent; they depend on the truth values of their constituents for their truth values
- Note: L |- P means that proposition P can be syntactically derived from L via means of the rules discussed next

Proofs

- A proof is a mechanism for showing that a given claim Q is a logical consequence of some premises P₁...P_k or
 - $-P_1, P_2, \dots, P_k \mid = Q \text{ or }$
 - $P_1 \land P_2 \land \dots \land P_k \Longrightarrow Q \text{ or} \\ \neg (P_1 \land P_2 \land \dots \land P_k) \lor Q$
- In order to establish the proof this final form must be shown to be a tautology

Logical Equivalences

- double negation
 - $\neg \neg p \Leftrightarrow p$
- commutative
 - $-(p \lor q) \Leftrightarrow (q \lor p)$
 - $(p \land q) \Leftrightarrow (q \land p)$
 - $\ (p {\Leftrightarrow} q) {\Leftrightarrow} (q {\Leftrightarrow} p)$
- associative
 - $-(p\lor q)\lor r \Leftrightarrow p\lor (q\lor r)$
 - $\ (p \land q) \land r \Leftrightarrow p \land (q \land r)$

- distributive
 - $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
 - $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- DeMorgan laws
 - $-\neg(p\lor q) \Leftrightarrow (\neg p\land \neg q)$
 - $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
- Implication
 - $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$
 - $(p \Rightarrow q) \Leftrightarrow \neg (p \land \neg q)$

11

9

Deduction Rules

- v-Introduction
 - $A \Longrightarrow A \lor B$
- ^-Introduction
 - $A, B \Longrightarrow A \land B$
- ¬-Introduction
- $(A \mid false) \Rightarrow \neg A$
- \Rightarrow -Introduction
 - $(A \mid -B) \Longrightarrow (A \Longrightarrow B)$
- ⇔-Introduction
 - $(A \mid -B), (B \mid -A) \Longrightarrow (A \Leftrightarrow B)$

- v-Elimination
 - $\ A \lor B, A \mid y, B \mid y \Rightarrow y$
- ^-Elimination
 - $A \land B \Longrightarrow A, B$
- ¬-Elimination
 - $\neg \neg \neg A \Rightarrow A, \neg A, A \Rightarrow false$
- \Rightarrow -Elimination
 - $A, (A \Longrightarrow B) \Longrightarrow B$
- \Leftrightarrow -Elimination
 - $A \Leftrightarrow B \Rightarrow (A \Rightarrow B), (B \Rightarrow A)$
 - 12

Prove $P \lor (Q \land R) \mid -(P \lor Q) \land (P \lor R)$

1. P
2. $P \lor Q$
3. $P \lor R$
4. $(P \lor Q) \land (P \lor R)$
5. $\mathbf{Q} \wedge \mathbf{R}$
6. Q
7. $\mathbf{P} \lor \mathbf{Q}$
8. R
9. P ∨ R
10. $(\mathbf{P} \lor \mathbf{Q}) \land (\mathbf{P} \lor \mathbf{R})$
11. $P \lor (Q \land R) \mid -(P \lor Q) \land (P \lor R)$

- Premise
 V-Introduction
 V-Introduction
 A-Introduction
 Premise
 A-Elimination
 V-Introduction
 A-Elimination and 5
 V-Introduction
- ^-Introduction, 7, 9
- v-Elimination and 1-4, 5-10

13

By Truth Table

Ρ	Q	R	(P	\vee	Q)	\wedge	R))	⇔((P	\vee	Q)	\wedge	(P	\vee	R))
Т	Т	Т	Т	т	Т	Т	Т	т	Т	Т	Т	т	Т	Т	Т
Т	Т	F	Т	т	Т	F	F	т	Т	Т	Т	т	Т	Т	F
Т	F	Т	Т	т	F	F	Т	т	Т	Т	F	т	Т	Т	Т
Т	F	F	Т	т	F	F	F	т	Т	Т	F	т	Т	Т	F
F	Т	Т	F	т	Т	Т	Т	т	F	Т	Т	т	F	Т	Т
F	Т	F	F	F	Т	F	F	т	F	Т	Т	F	F	F	F
F	F	Т	F	F	F	F	Т	т	F	F	F	F	F	Т	Т
F	F	F	F	F	F	F	F	т	F	F	F	F	F	F	F
1	1	1	1	3	1	2	1	7	1	4	1	6	1	5	1
Tautology concludes proof															

Resolution Rules

- Resolution
 - $-(A \lor P), (B \lor \neg P) \Rightarrow A \lor B$
- Chain Rule
 - $-(A \Rightarrow P), (P \Rightarrow B) \Rightarrow (A \Rightarrow B)$
- Modus Ponens
 - $-P, (P \Rightarrow A) \Rightarrow A$

Proof by Contradiction

- To establish
 - $-P_1, P_2, \dots, P_k \mid = Q$
- Negate Q
- Transform Ps and Q to conjunctive normal form $\mbox{ Example } (P \lor Q) \land (Q \lor S) \land ...$
- Apply resolution (and other) rules repeatedly until P and ¬P are derived
- These negate and the proof is achieved

15

Example

- Assume $P \Rightarrow Q, R \lor P$
 - Show that $R \Rightarrow S \mid -S \lor Q$
- Premises are $P \Rightarrow Q, R \lor P$, and $R \Rightarrow S$
- CNF: $\neg P \lor Q$, $R \lor P$, $\neg R \lor S$
- Negation of conclusion: $\neg(S \lor Q) \Leftrightarrow \neg S \land \neg Q$

Example, continued

- 1. $\neg P \lor Q$ Premise 2. $\mathbf{R} \vee \mathbf{P}$ 3. $\neg R \lor S$ 4. $\neg S \land \neg Q$ 5. **¬**S 6. ¬Q 7. $\mathbf{R} \lor \mathbf{Q}$ 8. ¬R 9. Q 10. NIL
 - Premise • Premise • Negation of Conclusion • ^-elimination • (1), (2), resolution • (3), (5)

• (7), (8)

• (6), (9)

Consistency

- Propositional logic is consistent
 - All provable statements are semantically true
 - That is if a set of premises S syntactically entail a proposition P then there is an interpretation in which P can be reasoned about from S.
 - Formally, if S \mid P, then S \mid = P

Completeness

- Propositional logic is complete
 - All semantically true statements are provable
 - That is, if a set of premises S semantically entails a proposition P, then P can be derived formally (syntactically).
 - Formally, $S \models P$, then $S \models P$
- One important consequence
 - Decidability
 - Given a finite set of propositions S and a proposition P, there is an algorithm that determines whether or not $S \models P$

17

Why is decidability important?	Library Example				
 When a specification S is created with propositional logic decidability confirms that S can be analyzed to demonstrate whether a property P holds in S or not. 	 S: a book is on the stacks R: a book is on reserve L: a book is on loan Q: a book is requested Constraints A book can be in only one of three states S, R, and L If a book is on the stacks or on reserve then it can be requested 				
21	22				
Library Example, continued	Predicate Logic				
 Constraints specified as propositions S ⇔¬(R ∨ L) R ⇔¬(S ∨ L) L ⇔¬(S ∨ R) S ∨ R ⇒ Q Homework 1 (submit via e-mail by Lec. 15) Prove "if a book is on loan then it is not requested" is a logical consequence 	 Propositional Logic cannot specify the relationships between objects It can only assert that particular properties hold or do not hold within a set of propositions Predicate Logic has the power to do so consists of constants, predicates, variables, and functions 				
23	24				

 Examples constants computer, mary, 2, variables x, y, z predicates mammal(x), parent(x, y) functions father(x), sqrt(x) 	Formal syntax of predicate logic • wff = proposition predicate \neg wff quantified-wff (, wff, op, wff,); • proposition = P Q R ; • predicate = predicate_name, (, term_list,); • predicate_name = IDENTIFIER; • term_list = term term, ",", term_list; • term = CONSTANT variable function, (term_list,); • variable = VARNAME; function = IDENTIFIER; • quantified-wff = quantifier, "•", wff; • quantifier = ∃, variable \forall , variable; • op = $\land \lor \Leftrightarrow \Rightarrow$				
25	26				
Example well-formed formulas • $\forall x \cdot \exists y \cdot (less(square(x), y))$ • $\forall x \cdot \forall y \cdot (likes(x, y) \Rightarrow marry(x, y))$ • $\exists x \cdot \exists y \cdot (airline(x) \land city(y) \land flies(x, y))$ • $\forall x \cdot \exists y, z \cdot (airline(x) \land city(y) \land city(z) \land$ flies(x, y) \land flies(x, z) $\Rightarrow (y=z)$) - $\forall x \cdot \exists !y \cdot (airline(x) \land city(y) \land flies(x, y))$	 Binding Variables x and y are bound ∀ x : jobs • ∃ y : queues • (¬executing(x) ⇒ has(y, x)) only y is bound ∃ y • on(x, y) When all variables are bound, we call the wff a closed formula 				
 – ∃! is a shorthand to express uniqueness Note: predicates are Boolean <i>n</i>-ary functions 	All closed formulas can be interpreted as a proposition				

Example, continued • domain distinction - (a) $\forall x \cdot (point(x) \lor line(x));$ - (b) $\forall x \cdot (\neg(point(x) \land line(x)));$ • incidence - $\forall x, y \cdot (lies_on(x, y) \Rightarrow (point(x) \land line(y)));$				
30				
Example, continued • unique line $-\forall x, y \cdot ((point(x) \land point(y) \land \neg(x=y)) \Rightarrow$ $\exists ! z \cdot (lies_on(x, z) \land lies_on(y, z)));$ • unique intersection $-\forall x, y \cdot ((line(x) \land line(y) \land \neg(x=y)) \Rightarrow$ $\exists ! z \cdot (lies_on(z, x) \land lies_on(z, y)));$				