
1

Lecture 13: Review of Logic

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 1999

2

Today’s Lecture

• Two different types of logic systems
– propositional logic

– predicate logic

3

Propositional Logic

• A proposition is a statement that is either
true or false, but not both

• Propositional Logic is the language of
propositions
– It consists of well-formed formulas constructed

from atomic formulas and logical connectives

– The meaning of a proposition is determined by
the truth values assigned to its assertions

4

Example

• P = “program does not terminate”

• Q = “alarm rings forever”

• P ⇒ Q (If the program does not terminate
then alarm rings forever)

¥P Q P ⇒ Q

¥T T T

¥T F F

¥F T/F T

5

Formal Language Definition

• terminals = { P, Q, R, …, ∧ , ∨ , ¬ , ⇒ , ⇔, (,)};

• nonterminals = { atomic formula, sentence };

• atomic formula = P | Q | R | … ;

• sentence = atomic formula | (, sentence,) |
¬ , sentence | sentence, ∨ , sentence |
sentence, ∧ , sentence | sentence, ⇒ , sentence |
sentence, ⇔, sentence;

6

Example

• sentence

• (sentence)

• (sentence ∨ sentence)

• (atomic formula ∨ (sentence))

• (P ∨ (¬ sentence))

• (P ∨ (¬ atomic formula))

• (P ∨ (¬ Q))

7

Truth Table

• Defines values of the logical connectives

P Q ¬P P∨ Q P∧ Q P⇒ Q P⇔Q

T T F T T T T

T F F T F F F

F T T T F T F

F F T F F T T

8

Semantics

• A sentence is true if it evaluates to true after
assigning a set of truth values to its atomic
propositions

• P and Q are equivalent if they evaluate to the same
truth values for every interpretation
– This is indicated P ≡ Q

• A sentence F is satisfiable if it evaluates to true for
at least one assignment of truth values, otherwise
it is called contradictory

9

Semantics, continued

• If, for a list of sentences L, every assignment that makes
the sentences of L true also makes P true, we say that P is a
semantic consequence of L
– This is written: L = P

• A sentence true for all assignments is called a tautology,
the reverse is called a contradiction

• All other sentences are called contingent; they depend on
the truth values of their constituents for their truth values

• Note: L |- P means that proposition P can be syntactically
derived from L via means of the rules discussed next

10

Proofs

• A proof is a mechanism for showing that a
given claim Q is a logical consequence of
some premises P1…Pk or
– P1, P2, … , Pk = Q or
– P1 ∧ P2 ∧ … ∧ Pk ⇒ Q or

– ¬ (P1 ∧ P2 ∧ … ∧ Pk) ∨ Q

• In order to establish the proof this final form
must be shown to be a tautology

11

Logical Equivalences

• double negation
– ¬¬ p⇔p

• commutative
– (p∨ q)⇔(q∨ p)

– (p∧ q)⇔(q∧ p)

– (p⇔q)⇔(q⇔p)

• associative
– (p∨ q)∨ r⇔p∨ (q∨ r)

– (p∧ q)∧ r⇔p∧ (q∧ r)

• distributive
– p∨ (q∧ r)⇔(p∨ q)∧ (p∨ r)

– p∧ (q∨ r)⇔(p∧ q)∨ (p∧ r)

• DeMorgan laws
– ¬ (p∨ q)⇔(¬p∧¬ q)

– ¬ (p∧ q)⇔(¬p∨¬ q)

• Implication
– (p⇒ q)⇔(¬p∨ q)

– (p⇒ q)⇔¬ (p∧¬ q)

12

Deduction Rules

• ∨ -Introduction
– A ⇒ A ∨ B

• ∧ -Introduction
– A, B ⇒ A ∧ B

• ¬ -Introduction
– (A |- false) ⇒ ¬ A

• ⇒ -Introduction
– (A |- B) ⇒ (A ⇒ B)

• ⇔-Introduction
– (A |- B),(B |- A) ⇒ (A ⇔B)

• ∨ -Elimination
– A ∨ B, A |- y, B |- y ⇒ y

• ∧ -Elimination
– A ∧ B ⇒ A, B

• ¬ -Elimination
– ¬ ¬ A ⇒ A, ¬A, A ⇒ false

• ⇒ -Elimination
– A, (A ⇒ B) ⇒ B

• ⇔-Elimination
– A⇔B ⇒ (A ⇒ B), (B ⇒ A)

13

Prove P ∨ (Q ∧ R) |- (P ∨ Q) ∧ (P ∨ R)

1. P

2. P ∨ Q

3. P ∨ R

4. (P ∨ Q) ∧ (P ∨ R)

5. Q ∧ R

6. Q
7. P ∨ Q

8. R
9. P ∨ R

10. (P ∨ Q) ∧ (P ∨ R)

11. P ∨ (Q ∧ R) |- (P ∨ Q) ∧ (P ∨ R)

• Premise

• ∨ -Introduction

• ∨ -Introduction

• ∧ -Introduction

• Premise

• ∧ -Elimination

• ∨ -Introduction

• ∧ -Elimination and 5

• ∨ -Introduction

• ∧ -Introduction, 7, 9

• ∨ -Elimination and 1-4, 5-10

14

By Truth Table

P Q R (P ∨ (Q ∧ R)) ⇔((P ∨ Q) ∧ (P ∨ R))
T T T T T T T T T T T T T T T T
T T F T T T F F T T T T T T T F
T F T T T F F T T T T F T T T T
T F F T T F F F T T T F T T T F
F T T F T T T T T F T T T F T T
F T F F F T F F T F T T F F F F
F F T F F F F T T F F F F F T T
F F F F F F F F T F F F F F F F
1 1 1 1 3 1 2 1 7 1 4 1 6 1 5 1

Tautology concludes proof

15

Resolution Rules

• Resolution
– (A ∨ P), (B ∨ ¬P) ⇒ A ∨ B

• Chain Rule
– (A ⇒ P), (P ⇒ B) ⇒ (A ⇒ B)

• Modus Ponens
– P, (P ⇒ A) ⇒ A

16

Proof by Contradiction

• To establish
– P1, P2, … , Pk = Q

• Negate Q

• Transform Ps and Q to conjunctive normal form
– Example (P ∨ Q) ∧ (Q ∨ S) ∧ …

• Apply resolution (and other) rules repeatedly until
P and ¬P are derived

• These negate and the proof is achieved

17

Example

• Assume P ⇒ Q, R ∨ P
– Show that R ⇒ S |- S ∨ Q

• Premises are P ⇒ Q, R ∨ P, and R ⇒ S

• CNF: ¬P ∨ Q, R ∨ P, ¬R ∨ S

• Negation of conclusion: ¬ (S ∨ Q) ⇔ ¬S ∧ ¬Q

18

Example, continued

1. ¬P ∨ Q

2. R ∨ P

3. ¬R ∨ S

4. ¬S ∧ ¬Q

5. ¬S

6. ¬Q

7. R ∨ Q

8. ¬R

9. Q

10. NIL

• Premise

• Premise

• Premise

• Negation of Conclusion
• ∧ -elimination

• ∧ -elimination

• (1), (2), resolution

• (3), (5)

• (7), (8)

• (6), (9)

19

Consistency

• Propositional logic is consistent
– All provable statements are semantically true

• That is if a set of premises S syntactically entail a
proposition P then there is an interpretation in which
P can be reasoned about from S.

• Formally, if S |- P, then S |= P

20

Completeness

• Propositional logic is complete
– All semantically true statements are provable

• That is, if a set of premises S semantically entails a proposition
P, then P can be derived formally (syntactically).

• Formally, S |= P, then S |- P

• One important consequence
– Decidability

• Given a finite set of propositions S and a proposition P, there is
an algorithm that determines whether or not S |= P

21

Why is decidability important?

• When a specification S is created with
propositional logic
– decidability confirms that S can be analyzed to

demonstrate whether a property P holds in S or not.

22

Library Example

• S: a book is on the stacks

• R: a book is on reserve

• L: a book is on loan

• Q: a book is requested

• Constraints
– A book can be in only one of three states S, R, and L

– If a book is on the stacks or on reserve
then it can be requested

23

Library Example, continued

• Constraints specified as propositions
– S ⇔¬ (R ∨ L)

– R ⇔¬ (S ∨ L)

– L ⇔¬ (S ∨ R)

– S ∨ R ⇒ Q

• Homework 1 (submit via e-mail by Lec. 15)
– Prove “if a book is on loan then it is not

requested” is a logical consequence
24

Predicate Logic

• Propositional Logic cannot specify the
relationships between objects
– It can only assert that particular properties hold

or do not hold within a set of propositions

• Predicate Logic has the power to do so
– consists of

• constants, predicates, variables, and functions

25

Examples

• constants
– computer, mary, 2, …

• variables
– x, y, z

• predicates
– mammal(x), parent(x, y)

• functions
– father(x), sqrt(x)

26

Formal syntax of predicate logic

• wff = proposition | predicate | ¬wff | quantified-wff | (, wff, op, wff,);

• proposition = P | Q| R | …;

• predicate = predicate_name, (, term_list,);

• predicate_name = IDENTIFIER;

• term_list = term | term, “,”, term_list;

• term = CONSTANT | variable | function, (term_list,);

• variable = VARNAME; function = IDENTIFIER;

• quantified-wff = quantifier, “•”, wff;

• quantifier = ∃ , variable | ∀ , variable;

• op = ∧ | ∨ | ⇔ | ⇒

27

Example well-formed formulas

• ∀ x • ∃ y • (less(square(x), y))

• ∀ x • ∀ y • (likes(x, y) ⇒ marry(x, y))

• ∃ x • ∃ y • (airline(x) ∧ city(y) ∧ flies(x, y))

• ∀ x • ∃ y,z • (airline(x) ∧ city(y) ∧ city(z) ∧
flies(x, y) ∧ flies(x, z) ⇒ (y=z))
– ∀ x • ∃ !y • (airline(x) ∧ city(y) ∧ flies(x, y))

– ∃ ! is a shorthand to express uniqueness

• Note: predicates are Boolean n-ary functions

28

Binding Variables

• x and y are bound
– ∀ x : jobs • ∃ y : queues • (¬executing(x) ⇒ has(y, x))

• only y is bound
– ∃ y • on(x, y)

• When all variables are bound, we call the wff a
closed formula

• All closed formulas can be interpreted as a
proposition

29

Example use of predicate logic

• Consider lines and points on a plane
– (1) two lines meet at a unique point

– (2) there is a unique line through any two points

– line(x) = x is a line

– point(x) = x is a point

– lies_on(x, y) = point x is contained in line y

30

Example, continued

• domain distinction
– (a) ∀ x • (point(x) ∨ line(x));

– (b) ∀ x • (¬ (point(x) ∧ line(x)));

• incidence
– ∀ x, y • (lies_on(x, y) ⇒ (point(x) ∧ line(y)));

31

Example, continued

• equality for lines
– ∃ x1, x2 • (¬ (x1 = x2) ∧

lies_on(x1, y1) ∧ lies_on(x1, y2) ∧
lies_on(x2, y1) ∧ lies_on(x2, y2)) ⇒ y1 = y2;

32

Example, continued

• unique line
– ∀ x, y • ((point(x) ∧ point(y) ∧ ¬ (x=y)) ⇒

∃ !z•(lies_on(x, z) ∧ lies_on(y,z)));

• unique intersection
– ∀ x, y • ((line(x) ∧ line(y) ∧ ¬ (x=y)) ⇒

∃ !z•(lies_on(z, x) ∧ lies_on(z, y)));

