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Today’s Lecture

• Two different types of logic systems
– propositional logic

– predicate logic
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Propositional Logic

• A proposition is a statement that is either
true or false, but not both

• Propositional Logic is the language of
propositions
– It consists of well-formed formulas constructed

from atomic formulas and logical connectives

– The meaning of a proposition is determined by
the truth values assigned to its assertions
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Example

• P = “program does not terminate”

• Q = “alarm rings forever”

• P ⇒  Q (If the program does not terminate
then alarm rings forever)

¥P Q    P ⇒  Q

¥T T      T

¥T F      F

¥F T/F    T
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Formal Language Definition

• terminals = { P, Q, R, …, ∧ , ∨ , ¬ , ⇒ , ⇔, (, )};

• nonterminals = { atomic formula, sentence };

• atomic formula = P | Q | R | … ;

• sentence = atomic formula | (, sentence, ) |
¬ , sentence | sentence, ∨ , sentence |
sentence, ∧ , sentence | sentence, ⇒ , sentence |
sentence, ⇔, sentence;
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Example

• sentence

• ( sentence )

• ( sentence ∨  sentence )

• ( atomic formula ∨  ( sentence ) )

• ( P ∨  ( ¬  sentence ) )

• ( P ∨  (¬  atomic formula ) )

• ( P ∨  (¬  Q ) )
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Truth Table

• Defines values of the logical connectives

P Q ¬P P∨ Q P∧ Q P⇒ Q P⇔Q

T T  F  T   T   T    T

T F  F  T   F   F    F

F T  T  T   F   T    F

F F  T  F   F   T    T
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Semantics

• A sentence is true if it evaluates to true after
assigning a set of truth values to its atomic
propositions

• P and Q are equivalent if they evaluate to the same
truth values for every interpretation
– This is indicated P ≡ Q

• A sentence F is satisfiable if it evaluates to true for
at least one assignment of truth values, otherwise
it is called contradictory
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Semantics, continued

• If, for a list of sentences L, every assignment that makes
the sentences of L true also makes P true, we say that P is a
semantic consequence of L
– This is written: L =  P

• A sentence true for all assignments is called a tautology,
the reverse is called a contradiction

• All other sentences are called contingent; they depend on
the truth values of their constituents for their truth values

• Note: L |- P means that proposition P can be syntactically
derived from L via means of the rules discussed next
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Proofs

• A proof is a mechanism for showing that a
given claim Q is a logical consequence of
some premises P1…Pk or
– P1,  P2,  … , Pk =  Q or
– P1 ∧  P2 ∧  … ∧  Pk ⇒  Q or

– ¬ (P1 ∧  P2 ∧  … ∧  Pk) ∨  Q

• In order to establish the proof this final form
must be shown to be a tautology
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Logical Equivalences

• double negation
– ¬¬ p⇔p

• commutative
– (p∨ q)⇔(q∨ p)

– (p∧ q)⇔(q∧ p)

– (p⇔q)⇔(q⇔p)

• associative
– (p∨ q)∨ r⇔p∨ (q∨ r)

– (p∧ q)∧ r⇔p∧ (q∧ r)

• distributive
– p∨ (q∧ r)⇔(p∨ q)∧ (p∨ r)

– p∧ (q∨ r)⇔(p∧ q)∨ (p∧ r)

• DeMorgan laws
– ¬ (p∨ q)⇔(¬p∧¬ q)

– ¬ (p∧ q)⇔(¬p∨¬ q)

• Implication
– (p⇒ q)⇔(¬p∨ q)

– (p⇒ q)⇔¬ (p∧¬ q)
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Deduction Rules

• ∨ -Introduction
– A ⇒  A ∨ B

• ∧ -Introduction
– A, B ⇒  A ∧  B

• ¬ -Introduction
– (A |- false) ⇒  ¬ A

• ⇒ -Introduction
– (A |- B) ⇒  (A ⇒  B)

• ⇔-Introduction
– (A |- B),(B |- A) ⇒  (A ⇔B)

• ∨ -Elimination
– A ∨  B, A |- y, B |- y ⇒  y

• ∧ -Elimination
– A ∧  B ⇒  A, B

•  ¬ -Elimination
– ¬  ¬ A ⇒  A, ¬A, A ⇒  false

• ⇒ -Elimination
– A, (A ⇒  B) ⇒  B

• ⇔-Elimination
– A⇔B ⇒  (A ⇒  B), (B ⇒ A)
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Prove P ∨  (Q ∧  R) |- (P ∨  Q) ∧  (P ∨  R)

1. P

2. P ∨  Q

3. P ∨  R

4. (P ∨  Q) ∧  (P ∨  R)

5. Q ∧  R

6. Q
7. P ∨  Q

8. R
9. P ∨  R

10. (P ∨  Q) ∧  (P ∨  R)

11. P ∨  (Q ∧  R) |- (P ∨  Q) ∧  (P ∨  R)

• Premise

• ∨ -Introduction

• ∨ -Introduction

• ∧ -Introduction

• Premise

• ∧ -Elimination

• ∨ -Introduction

• ∧ -Elimination and 5

• ∨ -Introduction

• ∧ -Introduction, 7, 9

• ∨ -Elimination and 1-4, 5-10
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By Truth Table

P Q R (P ∨ (Q ∧  R)) ⇔((P ∨  Q) ∧  (P ∨  R))
T T T  T T T T T   T   T T T  T  T T T
T T F  T T T F F   T   T T T  T  T T F
T F T  T T F F T   T   T T F  T  T T T
T F F  T T F F F   T   T T F  T  T T F
F T T  F T T T T   T   F T T  T  F T T
F T F  F F T F F   T   F T T  F  F F F
F F T  F F F F T   T   F F F  F  F T T
F F F  F F F F F   T   F F F  F  F F F
1 1 1  1 3 1 2 1   7   1 4 1  6  1 5 1

Tautology concludes proof
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Resolution Rules

• Resolution
– (A ∨  P), (B ∨  ¬P) ⇒  A ∨  B

• Chain Rule
– (A ⇒  P), (P ⇒  B) ⇒  (A ⇒  B)

• Modus Ponens
– P, (P ⇒  A) ⇒  A
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Proof by Contradiction

• To establish
– P1,  P2,  … , Pk =  Q

• Negate Q

• Transform Ps and Q to conjunctive normal form
– Example (P ∨  Q) ∧  (Q ∨  S) ∧  …

• Apply resolution (and other) rules repeatedly until
P and ¬P are derived

• These negate and the proof is achieved
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Example

• Assume P ⇒  Q, R ∨  P
– Show that R ⇒  S |- S ∨  Q

• Premises are P ⇒  Q, R ∨  P, and R ⇒  S

• CNF: ¬P ∨  Q, R ∨  P, ¬R ∨  S

• Negation of conclusion: ¬ (S ∨  Q) ⇔ ¬S ∧  ¬Q
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Example, continued

1. ¬P ∨  Q

2. R ∨  P

3. ¬R ∨  S

4. ¬S ∧  ¬Q

5. ¬S

6. ¬Q

7. R ∨  Q

8. ¬R

9. Q

10. NIL

• Premise

• Premise

• Premise

• Negation of Conclusion
• ∧ -elimination

• ∧ -elimination

• (1), (2), resolution

• (3), (5)

• (7), (8)

• (6), (9)
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Consistency

• Propositional logic is consistent
– All provable statements are semantically true

• That is if a set of premises S syntactically entail a
proposition P then there is an interpretation in which
P can be reasoned about from S.

• Formally, if S |- P, then S |= P
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Completeness

• Propositional logic is complete
– All semantically true statements are provable

• That is, if a set of premises S semantically entails a proposition
P, then P can be derived formally (syntactically).

• Formally, S |= P, then S |- P

• One important consequence
– Decidability

• Given a finite set of propositions S and a proposition P, there is
an algorithm that determines whether or not S |= P
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Why is decidability important?

• When a specification S is created with
propositional logic
– decidability confirms that S can be analyzed to

demonstrate whether a property P holds in S or not.
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Library Example

• S: a book is on the stacks

• R: a book is on reserve

• L: a book is on loan

• Q: a book is requested

• Constraints
– A book can be in only one of three states S, R, and L

– If a book is on the stacks or on reserve
then it can be requested
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Library Example, continued

• Constraints specified as propositions
– S ⇔¬ (R ∨  L)

– R ⇔¬ (S ∨  L)

– L ⇔¬ (S ∨  R)

– S ∨  R ⇒  Q

• Homework 1 (submit via e-mail by Lec. 15)
– Prove “if a book is on loan then it is not

requested” is a logical consequence
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Predicate Logic

• Propositional Logic cannot specify the
relationships between objects
– It can only assert that particular properties hold

or do not hold within a set of propositions

• Predicate Logic has the power to do so
– consists of

• constants, predicates, variables, and functions
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Examples

• constants
– computer, mary, 2, …

• variables
– x, y, z

• predicates
– mammal(x), parent(x, y)

• functions
– father(x), sqrt(x)
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Formal syntax of predicate logic

• wff = proposition | predicate | ¬wff | quantified-wff | (, wff, op, wff, );

• proposition = P | Q| R | …;

• predicate = predicate_name, (, term_list, );

• predicate_name = IDENTIFIER;

• term_list = term | term, “,”, term_list;

• term = CONSTANT | variable | function, ( term_list, );

• variable = VARNAME; function = IDENTIFIER;

• quantified-wff = quantifier, “•”, wff;

• quantifier = ∃ , variable | ∀ , variable;

• op = ∧  | ∨  | ⇔ | ⇒
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Example well-formed formulas

• ∀  x • ∃  y • (less(square(x), y))

• ∀  x • ∀  y • (likes(x, y) ⇒  marry(x, y))

• ∃  x • ∃  y • (airline(x) ∧  city(y) ∧  flies(x, y))

• ∀  x • ∃  y,z • (airline(x) ∧  city(y) ∧  city(z) ∧
flies(x, y) ∧  flies(x, z) ⇒  (y=z))
– ∀  x • ∃ !y • (airline(x) ∧  city(y) ∧  flies(x, y))

– ∃ ! is a shorthand to express uniqueness

• Note: predicates are Boolean n-ary functions
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Binding Variables

• x and y are bound
– ∀  x : jobs • ∃  y : queues • (¬executing(x) ⇒  has(y, x))

• only y is bound
– ∃  y • on(x, y)

• When all variables are bound, we call the wff a
closed formula

• All closed formulas can be interpreted as a
proposition
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Example use of predicate logic

• Consider lines and points on a plane
– (1) two lines meet at a unique point

– (2) there is a unique line through any two points

– line(x) = x is a line

– point(x) = x is a point

– lies_on(x, y) = point x is contained in line y
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Example, continued

• domain distinction
– (a) ∀  x • (point(x) ∨  line(x));

– (b) ∀  x • (¬ (point(x) ∧  line(x)));

• incidence
– ∀  x, y • (lies_on(x, y) ⇒  (point(x) ∧  line(y)));
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Example, continued

• equality for lines
– ∃  x1, x2 • (¬ (x1 = x2) ∧

lies_on(x1, y1) ∧  lies_on(x1, y2) ∧
lies_on(x2, y1) ∧  lies_on(x2, y2)) ⇒  y1 = y2;
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Example, continued

• unique line
– ∀  x, y • ((point(x) ∧  point(y) ∧  ¬ (x=y)) ⇒

∃ !z•(lies_on(x, z) ∧  lies_on(y,z)));

• unique intersection
– ∀  x, y • ((line(x) ∧  line(y) ∧  ¬ (x=y)) ⇒

∃ !z•(lies_on(z, x) ∧  lies_on(z, y)));


