Lecture 13: Review of Logic

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 1999

Today’s Lecture

» Two different types of logic systems
— propositional logic
— predicate logic

Propositional Logic

« A proposition is a statement that is either
true or false, but not both

* Propositional Logic is the language of
propositions
— It consists of well-formed formulas constructed
from atomic formulas and logical connectives

— The meaning of a proposition is determined by
the truth values assigned to its assertions

Example

« P = “program does not terminate”
* Q ="“alarm rings forever”

« PO Q (If the program does not terminate
then alarm rings forever)
*P 0 PO Q

T T T
T F F
*F T/F T

Formal Language Definition Example

e terminals ={P, Q, R, ..L, T, -, 0, =, (,)}
* nonterminals = { atomic formula, sentence };
o atomic formula=P|Q|R]| ...;

» sentence = atomic formula | (, sentence,) |
-, sentence | sentencé,sentence |
sentencel,], sentence | sentence, sentence |
sentences , sentence;

sentence

(sentence)

(sentencél sentence)

(atomic formulal (sentence))
(PO(- sentence))

(PO (-~ atomic formula))

* (PO(EQ))
5 6
Truth Table Semantics
» Defines values of the logical connectives « A sentence is true if it evaluates to true after
assigning a set of truth values to its atomic
P P P P pL] Pe .,
Q- o PLO 2 2 propositions
rr rB T T T T * P and Q are equivalent if they evaluate to the same
TF F T F F F truth values for every interpretation
F T T T F T F — This is indicated B Q
FE T F - - - * A sentence F is satisfiable if it evaluates to true for

at least one assignment of truth values, otherwise
it is called contradictory

Semantics, continued

If, for a list of sentences L, every assignment that makes

the sentences of L true also makes P true, we say that P is a
semantic consequence of L

— This is written: LIF P

A sentence true for all assignments is called a tautology,
the reverse is called a contradiction

All other sentences are called contingent; they depend on
the truth values of their constituents for their truth values

Note: L |- P means that proposition P can be syntactically
derived from L via means of the rules discussed next

9

Proofs

» A proof is a mechanism for showing that a
given claim Q is a logical consequence of
some premises,P.P, or
-P, P,,RE Qor
~-P, 0P, 0...0P O Qor
—--(P,0PR,0...0R,0Q

 In order to establish the proof this final form
must be shown to be a tautology

» double negation

e commutative

e associative

Logical Equivalences

» distributive
— p(qLir) = (pUo)L(pLT)
— p(qLir) < (pUo)L(pLr)

——|—|p<:>p

— (pq) = (9Cp) DeMorgan laws
— (pla) = (qUp) — = (ptg) = (=p= q)
- (p=a)=(Q=p) — =(pa) = (=p q)

 Implication
— (PO) = (=pLq)
— (PH g)==(p= q)

— (pOg)Cr < pL(qCr)
— (POg)Cr < pL(qCr)

Deduction Rules

e [FiIntroduction e [}Elimination
- AOADB - AOB,A|-y,B|-yOy
e [FIntroduction e [FElimination
- ABO AOB - AOBO A, B
e =-Introduction e —-Elimination
— (A |- false)d -A — ==-A0 A -A AD false
e [-Introduction e [-Elimination
- (A|-B)O (AO B) - A(AOBOIB
e = -Introduction e = -Elimination

- (A|-B),(B|-A)D (A =B) —- A=BO (ADO B), (BOA)

12

Prove PO(QOR) |- (POQ)I(POR) By Truth Table
1.P * Premise PQOQR (POQOR)) =((POQ O (P UR))
2.POQ e [Fntroduction TTT TTTTT T TTT T TTT
3.POR e [FIntroduction TTF TTTTEFF T TTT T TTF
4. (POQ) O(P OR) e [FIntroduction TFT TTFFT T TTF T TTT
5.Q|:|R * Premise TFF TTZFFF T TTF T TTF
6.Q e [FElimination FTT FTTTT T FTT T FTT
7.POQ e [FIntroduction FTF FFTFF T FTT F FFF
8.R e [FElimination and 5 FFT FFFFT T FFF F FTT
9. POR ¢ [Fntroduction FFF FFFFF T FFF F FFF
10. (POQ)O(POR) » [Hntroduction, 7, 9 111 13121 7 141 6 151
11.PO(QOR) |- (POQ)O(POR) e [Elimination and 1-4, 5-10 Tautology concludes proof

13 14
Resolution Rules Proof by Contradiction

* Resolution « To establish

-(AOP),(BO-P)O ALB -P, P, ...,REQ
« Chain Rule » Negate Q o

_(AO P), (PO B)O (A O B) Transform Ps and Q to conjunctive normal form

— Example (F1Q)O(QOS)O...

* Modus Ponens * Apply resolution (and other) rules repeatedly until

-P,(POADOA P and-P are derived

* These negate and the proof is achieved
15 16

Example

Assume R1 Q, ROP

— Show that R1 S |- SOQ

Premisesare B Q, ROP,and R] S
CNF:-POQ, ROP,-ROS

Negation of conclusions (SLQ) = =SO-Q

Example, continued

1.-POQ ¢ Premise

2.ROP ¢ Premise

3.-R0OS * Premise

4.-S0-Q * Negation of Conclusion
5.-S ¢ [Felimination

6.-Q ¢ [Felimination

7.ROQ * (1), (2), resolution
8.-R « (3), (5

9.Q « (7)., (8)

10. NIL « (6), (9

Consistency

» Propositional logic is consistent

— All provable statements are semantically true

» That is if a set of premises S syntactically entail a
proposition P then there is an interpretation in which
P can be reasoned about from S.

* Formally, if S |- P, then S |= P

Completeness

* Propositional logic is complete

— All semantically true statements are provable

* That is, if a set of premises S semantically entails a proposition
P, then P can be derived formally (syntactically).

e Formally, S |=P,then S |- P
 One important consequence
— Decidability

< Given a finite set of propositions S and a proposition P, there is
an algorithm that determines whether or not S |= P

20

Why is decidability important?

* When a specification S is created with
propositional logic
— decidability confirms that S can be analyzed to
demonstrate whether a property P holds in S or not.

21

Library Example

S: a book is on the stacks
R: a book is on reserve

L: a book is on loan

Q: a book is requested

Constraints
— A book can be in only one of three states S, R, and L

— If a book is on the stacks or on reserve
then it can be requested

22

Library Example, continued

» Constraints specified as propositions
~S<=(ROL)
—~ R ==(SOL)
—L ==(SOR)
—~SORO Q
« Homework 1 (submit via e-mail by Lec. 15)

— Prove “if a book is on loan then it is not
requested” is a logical consequence

23

Predicate Logic

» Propositional Logic cannot specify the
relationships between objects

— It can only assert that particular properties hold
or do not hold within a set of propositions

» Predicate Logic has the power to do so

— consists of
 constants, predicates, variables, and functions

24

Examples

constants

— computer, mary, 2, ...
variables

-XY,Z

predicates

— mammal(x), parent(Xx, y)
functions

— father(x), sqrt(x)

25

Formal syntax of predicate logic

» wiff = proposition | predicateqwff | quantified-wff | (, wff, op, wff,);
e proposition=P|Q|R]|..;

» predicate = predicate_name, (, term_list,);

» predicate_name = IDENTIFIER,;

o term_list = term | term, “,", term_list;

e term = CONSTANT | variable | function, (term_list,);

» variable = VARNAME; function = IDENTIFIER;

» quantified-wff = quantifier, “o”, wff;

» quantifier =[] variable [J, variable;

o op=0]|0]|< |0

26

Example well-formed formulas

[xeOy « (less(square(x), y))

Oxedy e (likes(x, y)d marry(Xx, y))

[Ox ¢ Oy « (airline(x)d city(y) O flies(x, y))
[x «[y,z « (airline(x)U city(y) O city(z) O
flies(x, y) Oflies(x, z)0 (y=z))

— O x « Oy « (airline(x) O city(y) Oflies(x, y))

— [is a shorthand to express unigueness
Note: predicates are Booleasary functions

27

Binding Variables

x and y are bound

— O x:jobs [y : queues *{executing(x)] has(y, x))
only y is bound

— Oy < on(x,y)

When all variables are bound, we call the wff a
closed formula

All closed formulas can be interpreted as a
proposition

28

Example use of predicate logic

» Consider lines and points on a plane
— (1) two lines meet at a unique point
— (2) there is a unique line through any two points
— line(x) = x is a line
— point(x) = x is a point
— lies_on(x, y) = point x is contained in line y

29

Example, continued

e domain distinction
— (a)d x « (point(x) I line(x));
— (b) O x * (= (point(x) O line(x)));
* incidence
— X,y (lies_on(x, ylI (point(x)dline(y)));

30

Example, continued

 equality for lines
—0x1, x2« ((x1 =x2)0
lies_on(x1, y1)llies_on(x1, y2)]
lies_on(x2, yl)llies_on(x2, y2)11 yl1 =y2;

31

Example, continued

 unique line
— X,y * ((point(x)J point(y) O - (x=y)) U
[ze(lies_on(x, z)1lies_on(y,z)));
* unique intersection
— 0%,y ((line(x)Uline(y) O=(x=y)) O
[dze(lies_on(z, x)1lies_on(z, y)));

32

