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Today’s Lecture

• Introduction to Specifications
– Present an extended example

Lecture 12 3

Specification

• Records Results of a Creative Activity
– Requirements, design, code

– Project plan, test plan, configuration

• Agreement Among Parties to a Service
– Clients and vendors; vendors and engineers

– Note: relative and subjective
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Specification Qualities

• Clear, Unambiguous, and Understandable
 Are these self-contradictory?

• Consistent
 How can we check this?

• Internally and Externally Complete
 Does completeness reduce understandability?

 What about normal vs. exceptional behavior?
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Specifications are Software

• Have a Lifecycle

• Should be Modular

• Come in Versions

• Exhibit Dependencies
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Specifications Can Be Wrong

• Need to Validate and Verify (V&V)

• V&V is a “W.R.T.” Activity
– Implies existence of another specification

– But how do we V&V that other specification?

• Human Holds the Ultimate Specification
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Getting Specifications Right

• (Reusable) Layers and/or Modules Help
 A confidence game

• Formality Helps
 For example, declarations vs. uses
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Specification Notations

• Key to Qualities

• Affect V&V Options

• Most are Equivalent in Expressive Power

• Differ in Expressive Convenience
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Specification/Modeling Styles
• Operational (or Imperative)

– Described according to desired actions

– Usually given in terms of an execution model

• Descriptive (or Declarative)
– Described according to desired properties

– Usually given in terms of axioms or algebras

• Structural (or Relational)
– Described according to desired relationships

– Usually given in terms of multi/hyper graphs
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An Informal Specification

• A system consists of a set of object files.
Each object file is derived from one or more
source files. Object and source files have a
timestamp indicating when they were last
modified. If an object file is older than any
source file, then the object file must be
rederived.
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Make Specification Language

• Hybrid Declarative/Imperative/Relational

• Dependencies are Relational

• Rules are Declarative

• Actions are Imperative


