
Lecture 12 1

Lecture 12: Introduction to
Specifications

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 1999

Lecture 12 2

Today’s Lecture

• Introduction to Specifications
– Present an extended example

Lecture 12 3

Specification

• Records Results of a Creative Activity
– Requirements, design, code

– Project plan, test plan, configuration

• Agreement Among Parties to a Service
– Clients and vendors; vendors and engineers

– Note: relative and subjective

Lecture 12 4

Specification Qualities

• Clear, Unambiguous, and Understandable
 Are these self-contradictory?

• Consistent
 How can we check this?

• Internally and Externally Complete
 Does completeness reduce understandability?

 What about normal vs. exceptional behavior?



Lecture 12 5

Specifications are Software

• Have a Lifecycle

• Should be Modular

• Come in Versions

• Exhibit Dependencies

Lecture 12 6

Specifications Can Be Wrong

• Need to Validate and Verify (V&V)

• V&V is a “W.R.T.” Activity
– Implies existence of another specification

– But how do we V&V that other specification?

• Human Holds the Ultimate Specification

Lecture 12 7

Getting Specifications Right

• (Reusable) Layers and/or Modules Help
 A confidence game

• Formality Helps
 For example, declarations vs. uses

Lecture 12 8

Specification Notations

• Key to Qualities

• Affect V&V Options

• Most are Equivalent in Expressive Power

• Differ in Expressive Convenience



Lecture 12 9

Specification/Modeling Styles
• Operational (or Imperative)

– Described according to desired actions

– Usually given in terms of an execution model

• Descriptive (or Declarative)
– Described according to desired properties

– Usually given in terms of axioms or algebras

• Structural (or Relational)
– Described according to desired relationships

– Usually given in terms of multi/hyper graphs

Lecture 12 10

System
Test Case

System
Test Set

Documentation
Fragment

User
Documentation

Subsystem

Design
Fragment

Unit
Test Set

Requirements
Fragment

Composes Composes

Tests

Composes

Composes

DocumentsTests

Composes

Tests

Implements

1 N

N

M

Requirements
Specification

Composes

Composes

Feature

Composes Reflects

Module

Integration
Test Case

Integration
Test Set

Design
Specification

Unit
Test Case

Lecture 12 11

An Informal Specification

• A system consists of a set of object files.
Each object file is derived from one or more
source files. Object and source files have a
timestamp indicating when they were last
modified. If an object file is older than any
source file, then the object file must be
rederived.

Lecture 12 12

Make Specification Language

• Hybrid Declarative/Imperative/Relational

• Dependencies are Relational

• Rules are Declarative

• Actions are Imperative


