
Lecture 8 1

Lecture 8
20th Anniversary Reflections

Kenneth M. Anderson

Foundations of Software Engineering

CSCI 5828 - Spring Semester, 1999

Lecture 8 2

Today’s Lecture

• Discuss Brook’s reflections on the Mythical
Man-Month, 20 years after he wrote it.

Lecture 8 3

Why a new version?

• The book was still being read
– 20 years later Brooks was still receiving

comments and questions from readers

– In the Reflections chapter, he consider what is
still right, what is wrong, and then examines
current trends in Software Engineering

• Brooks himself has moved on; his most recent
research is in virtual environments

Lecture 8 4

Conceptual Integrity

• “Today I am more convinced than ever.
Conceptual integrity is central to product
quality.”
– He cites having a single architect the most

important step towards achieving this goal

– He mentions that in his software engineering
class with teams of 4 people, he insists that
each team select a manager and an architect



Lecture 8 5

The Architect

• He still believes in having one person in
charge of the design goals and architecture
for a system
– The architect is the user’s champion

– He discusses “recursion” with architects
• For large systems, additional architects should be

assigned to work on subsystems. The chief architect
is still in charge of the overall system

Lecture 8 6

The User

• Brooks focuses on the user
– microcomputer revolution has spawned large, hard-to-

characterize user sets for applications
• Unlike the contract software systems of the 70’s

• It’s much harder to design a general-purpose tool

• Featuritis is a problem (Word 6 for the Mac)

– Brooks argues for the need to define the user set
• He says “its better to be explicit and wrong than ambiguous”

• He recommends using probability distributions about how
many users will have a particular characteristic; then base
design decisions on these probability distributions

Lecture 8 7

The Second System Effect Gotcha

• The Mythical Man-Month recommended
– avoiding architects on their second systems

• an architect must be extra disciplined on his/her second system

– and throwing out your first system

• Well, which is it?!?
– With respect to the former

• Brooks was speaking of the second “fielded” system

– With respect to the latter
• Brooks was speaking of rapid prototypes

Lecture 8 8

Graphical User Interfaces

• Brooks considers the WIMP interface to be a
“triumph” (but ultimately sides with speech)
– He uses the Macintosh as an example

• Although he correctly cites the work of Doug Englebart from
Stanford and Bob Taylor at the Xerox PARC as the originators

– Conceptual Integrity achieved in the metaphor

– Seamless support for novice and skilled users

– Two Mice (Failed to mention Doug Englebart’s
chording device)

– GUI in ROM (Direct Incorporation)



Lecture 8 9

Critiquing the Waterfall

• Brooks says “The Waterfall is Wrong!”
– Actually he points out that the many variations

that had sprung up in response to the original
waterfall showed that it was considered wrong
back in the 70’s

– It needs
• User involvement and Feedback

• Incremental Development

Lecture 8 10

The Man-Month Revisited

• Brooks sites a study by Boehm
– of 63 software engineering projects

• that confirms the fallacy of the Man-Month as a
productivity measure
– T = 2.5(MM)^1/3 (Time to ship)

– “Hardly any projects succeed in less than 3/4 of the
calculated optimum schedule, regardless of the number
of people applied!

• Brook’s Law has also stood the test of time

Lecture 8 11

Other topics

• Power of People

– Team Fusion
• Moving projects causes them to start over

• Power of Giving up Power
– Delegate Power down the org. chain

• Empowers teams; improves morale

• Millions of computers

• Shrink-wrapped Software

Lecture 8 12

Buy *and* Build

• Components raise the level of abstraction
– MetaProgramming

• 4th Generation Languages; Scripting Languages

• Attacks the Essence
– Components provide richness of function, shorter

development time, tested components, better
documentation, and lower cost

• Four types of Users
– as-is, single-application metaprogrammer, external

function, metaprogrammer developer


