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Today’s Lecture

• Briefly Review Software Life Cycles

• Discuss problems associated with them
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Software Lifecycle

• A series of steps marking the progress of a
software product

• Lifetimes range from days to years

• Consists of
– people!

– overall process

– intermediate products

– stages of the process
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Intermediate Software Products

• Objectives
– Demarcate end of phases

– Enable effective reviews

– Specify requirements for next phase

• Form
– Rigorous

– Machine processible (highly desirable)

• Content
– Specifications, Tests, Documentation
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Example Artifacts

• Options Document
– Problem Definition

– Potential Solutions

– Proposed System

• Cost-Benefit Analysis
– Benefits

• Achievable Goals

– Costs
• Development & Maint.

– Analysis
• Net improvement

• Requirements
– Boilerplate

– Project scope

– Project history

– Current System

– New System

– Requirements

• Preliminary Plan
– Statement of Work

Mgmt, Docs, Testing Plans

– Schedules
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Phases of a Software Lifecycle

• Standard Phases
– Requirements Analysis & Specification

– Design

– Implementation and Integration

– Operation and Maintenance

– Change in Requirements

– Testing throughout!

• Phases promote manageability and provide
organization
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Requirements Analysis and
Specification

• Problem Definition —> Requirements Specification
– determine exactly what client wants and identify constraints

– develop a contract with client

– Specify the product’s task explicitly

• Difficulties
– client asks for wrong product

– client is computer/software illiterate

– specifications may be ambiguous, inconsistent, incomplete

• Validation
– extensive reviews to check that requirements satisfy client needs

– look for ambiguity, consistency, incompleteness

– check for feasibility, testability

– develop system/acceptance test plan
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Design

• Requirements Specification —> Design
– develop architectural design (system structure)

• decompose software into modules with module interfaces

– develop detailed design (module specifications)
• select algorithms and data structures

– maintain record of design decisions

• Difficulties
–  miscommunication between module designers

–  design may be inconsistent, incomplete, ambiguous

• Verification
– extensive design reviews (inspections) to determine that design conforms to

requirements

– check module interactions

– develop integration test plan
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Implementation and Integration

• Design —> Implementation
– implement modules and verify they meet their specifications

– combine modules according to architectural design

• Difficulties
–  module interaction errors

–  order of integration has a critical influence on product quality

• Verification and Testing
– code reviews to determine that implementation conforms to requirements and design

– develop unit/module test plan: focus on individual module functionality

– develop integration test plan: focus on module interfaces

– develop system test plan: focus on requirements and determine whether product as a whole
functions correctly
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Operation and Maintenance

• Operation —> Change
– maintain software after (and during) user operation

– determine whether product as a whole still functions correctly

• Difficulties
– design not extensible

– lack of up-to-date documentation

– personnel turnover

• Verification and Testing
– review  to determine that change is made correctly and all documentation updated

– test to determine that change is correctly implemented

– test to determine that no inadvertent changes were made to compromise system functionality
(check that no affected software has regressed)
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Build First
Version

Retirement

Operations Mode

Modify until
Client is satisfied

Build-and-Fix
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Requirements

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change

Waterfall Model
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Two views on Waterfall

• Business Systems
– Enterprise Initiatives lead to Feasibility Studies

• This starts the waterfall in motion

• Engineering Applications
– Waterfall starts much later in the process

– Software may not be considered until
• after concept exploration and experimental

prototyping of global engineering system
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Rapid Prototyping

Rapid Prototype

Verify

Retirement

Operations

Test

Implementation
Verify

Design

Req. Change
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For each build:
Perform detailed
design, implement.
Test. Deliver.

Incremental
Requirements

Verify

Retirement

Operations

Verify

Arch. Design
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Object-Oriented Life Cycles

• Obtain customer requirements for the OO System
– Identify scenarios or use cases

– Build a requirements model

• Select classes and objects using basic requirements

• Identify attributes and operations for each object

• Define structures and hierarchies that organize classes

• Build an object-relationship model

• Build an object-behavior model

• Review the OO analysis model against use cases
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Life Cycle Problems

• The user’s view of software development
– The waterfall is not “real” to them

• Consider Construction of a House
– Decisions are visible

• The lot

• The position of the house on the lot

• Landscaping

• Pouring the Foundation
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Constructing a House, continued

• As each decision is made, the “user” can see
its effects
– Its easy to see that making a change to the

position of the house on the lot is expensive
after the foundation is poured

• Its harder to determine what events in a
software life cycle “casts things in
concrete!”
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Software-based Example

if (employee_age > 60) then

…

end if;

Imagine the implications if the actual
retirement age changed to 59.5
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Consequences of the Change

• Integer to Rational
– Or to stay with integers

• change all values to months (round up or down?)

• Was “60” used for other purposes?
– If so, you must ensure that the code isn’t

intertwined

• Update all requirements documents, design
documents, specifications, etc.
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Life cycle Problems

• Requirements are incomplete

• Waterfall is expensive

• It takes too long

• Too many variations

• Communications Gap

• Assumes “What” can be separated from “How”

• Error Management
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Requirements are Incomplete

• Boehm reports that incomplete requirements cause
downstream costs to increase exponentially!

• Issues
– Computerization affects Environment

– “Report Effect”

– Lack of Visibility

– People are not used to attaining completeness
• Consider the construction of an airplane

– Many details are covered by standards…
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It costs too much!

• The waterfall was introduced when
– computer time more expensive than person time

• forced extensive desk planning

• use of time and space optimized

• Now, computer time is extremely cheap
– but our methods haven’t changed!

• The management of artifacts as the life cycle
progresses requires more and more resources
– New methods must focus on this information

management task
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It takes too long!

• Example Waterfall (> 400 important entities)
– 114 major tasks

– 87 different organizations

– 39 deliverables

– 164 authorizations

• All of this allows people to “talk” about the
project rather than “doing” the project!

• Inevitably, a project running too long, gets cut
short => results in incomplete or untenable system
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It takes too long! (continued)

• What to do?
– Experience will help

– CMM-like methods will increase the
organization’s ability to predict schedules

– Rules needed when project is shortened
• What requirements are removed?

• How is the system’s functionality scaled back?
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Too many variations!

• Key problems
– communication between practitioners

• each builds large systems but use
– different vocabulary

– different steps

– different deliverables

– Difficult to assess life cycle critically
• Problems are shared by all; but without common

understanding how are root causes found?
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End-User Communications Gap

“What we understand to be the conventional life
cycle approach might be compared with a
supermarket at which the customer is forced to
provide a complete order to a stock clerk at the
door of the store with no opportunity to roam the
aisles–comparing prices, remembering items not
on the shopping list, or getting a headache and
deciding to go out for dinner…”

[McCracken and Jackson, 1982]
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Communications Gap, continued

• User involvement throughout the life cycle
– Participatory Design field

• Watch out for communications gap within the
development team!
– Horizontal Team Integration considered bad

• Tends to be little review; no chance for self-correction

– Vertical Teams better; maintenance still a problem
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“What vs. How”

• Assumption
– Problem description can be separated from

problem solution

• Unfortunately, people don’t behave this
way!
– People like to consider a range of solutions

• What are the trade-offs?

• A solution strategy may help clarify the problem
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Error Management

• It is impossible to predict all of the errors that a
software system must handle

• Thus, a module’s initial design is very likely to be
incomplete!
– Some errors may exist only because of a particular

implementation strategy

– if so, an implementation choice may then impact the
interface of the module (which is typically set during
design)


