Lecture 3: Software Life Cycles

Kenneth M. Anderson
Foundations of Software Engineering
CSCI 5828 - Spring Semester, 1999

Today’s Lecture

 Briefly Review Software Life Cycles
» Discuss problems associated with them

Software Lifecycle

» A series of steps marking the progress of a
software product

 Lifetimes range from days to years

» Consists of
— people!
— overall process
— intermediate products
— stages of the process

Lecture 3 3

Intermediate Software Products

* Objectives

— Demarcate end of phases

— Enable effective reviews

— Specify requirements for next phase
* Form

— Rigorous

— Machine processible (highly desirable)
* Content

— Specifications, Tests, Documentation

Lecture 3 4

Example Artifacts

» Options Document * Requirements
— Problem Definition — Boilerplate
— Potential Solutions — Project scope
— Proposed System — Project history
» Cost-Benefit Analysis — Current System
— Benefits — New System
« Achievable Goals — Requirements
— Costs * Preliminary Plan
+ Development & Maint. — Statement of Work
— Analysis Mgmt, Docs, Testing Plans
¢ Net improvement — Schedules
Lecture 3 5

Phases of a Software Lifecycle

» Standard Phases
Requirements Analysis & Specification
Design
— Implementation and Integration
— Operation and Maintenance
— Change in Requirements
— Testing throughout!
* Phases promote manageability and provide
organization

Lecture 3 6

Requirements Analysis and
Specification

* Problem Definition —> Requirements Specification
— determine exactly what client wants and identify constraints
— develop a contract with client
— Specify the product’s task explicitly

« Difficulties
— client asks for wrong product
— client is computer/software illiterate
— specifications may be ambiguous, inconsistent, incomplete

» Validation
— extensive reviews to check that requirements satisfy client needs
— look for ambiguity, consistency, incompleteness
— check for feasibility, testability
— develop system/acceptance test plan
Lecture 3 7

Design

» Requirements Specification —> Design
— develop architectural design (system structure)
« decompose software into modules with module interfaces
— develop detailed design (module specifications)
» select algorithms and data structures
— maintain record of design decisions
« Difficulties
— miscommunication between module designers
— design may be inconsistent, incomplete, ambiguous
» Verification

— extensive design reviews (inspections) to determine that design conforms to
requirements

— check module interactions
— develop integration test plan

Lecture 3 8

Implementation and Integration

» Design —> Implementation
— implement modules and verify they meet their specifications
— combine modules according to architectural design

« Difficulties

— module interaction errors
— order of integration has a critical influence on product quality

» Verification and Testing

code reviews to determine that implementation conforms to requirements and design
— develop unit/module test plan: focus on individual module functionality
— develop integration test plan: focus on module interfaces

— develop system test plan: focus on requirements and determine whether product as a whole
functions correctly

Lecture 3 9

Operation and Maintenance

* Operation —> Change
— maintain software after (and during) user operation
— determine whether product as a whole still functions correctly

« Difficulties
— design not extensible
— lack of up-to-date documentation
— personnel turnover

» Verification and Testing

— review to determine that change is made correctly and all documentation updated
— test to determine that change is correctly implemented

— test to determine that no inadvertent changes were made to compromise system functionality
(check that no affected software has regressed)

Lecture 3 10

Build-and-Fix

Waterfall Model

Build First
Version
Modify until = — - —
’ Client is satisfied |, :
] |
» | Operations Mode
Retirement
Lecture 3 11

__ Req. Change

Requirements -
Verify N _ ,

T Design - ;
Verify |

- Implementation |

Test i .

y |l

Operations

Retirement

Lecture 3 12

Two views on Waterfall

Rapid Prototyping

Raoid e Req. Change
. apid Prototype
 Business Systems P P 5
. e .- A ; Verif
— Enterprise Initiatives lead to Feasibility Studies Y P Design e
* This starts the waterfall in motion Verify
. > Implementation | _______
» Engineering Applications
. Test
— Waterfall starts much later in the process
— Software may not be considered until 3
. . Operations
« after concept exploration and experimental
prototyping of global engineering system v
Retirement
Lecture 3 13 Lecture 3 14
Incremental The Spiral Model [Boehm,1988]
Requirements 1 Sguene
===~ progress
Veri fy Determine g:;ﬂp'-;gh Evaluate alternatives,
> AI'Ch. Design glkzleer‘ﬁ;[;\{i_?/se;s, idemi'fy'/, resolve risks
Verify |_,| For each build:
Perform detailed [¢--------- || S Swwaa | e
design, implement i
Test. Deliver. : |
» Operations
v
Retirement
gsgcc:necl:uun Validation Develop, verify
" and Verification next-level product
Lecture 3 15 Lecture 3 16

Object-Oriented Life Cycles

* Obtain customer requirements for the OO System
— ldentify scenarios or use cases
— Build a requirements model

» Select classes and objects using basic requirements

* Identify attributes and operations for each object

» Define structures and hierarchies that organize classes
 Build an object-relationship model

» Build an object-behavior model

* Review the OO analysis model against use cases

Lecture 3 17

Life Cycle Problems

* The user’s view of software development
— The waterfall is not “real” to them

» Consider Construction of a House

— Decisions are visible
* The lot
» The position of the house on the lot
» Landscaping
» Pouring the Foundation

Lecture 3 18

Constructing a House, continued

* As each decision is made, the “user” can see
its effects
— Its easy to see that making a change to the
position of the house on the lot is expensive
after the foundation is poured
* Its harder to determine what events in a
software life cycle “casts things in
concrete!”

Lecture 3 19

Software-based Example

if (employee_age > 60) then
end if;

Imagine the implications if the actual
retirement age changed to 59.5

Lecture 3 20

Consequences of the Change

* Integer to Rational

— Or to stay with integers
» change all values to months (round up or down?)

» Was “60” used for other purposes?

— If so, you must ensure that the code isn’t
intertwined

» Update all requirements documents, design
documents, specifications, etc.

Lecture 3 21

Life cycle Problems

* Requirements are incomplete

» Waterfall is expensive

* It takes too long

* Too many variations

» Communications Gap

* Assumes “What” can be separated from “How”
* Error Management

Lecture 3 22

Requirements are Incomplete

» Boehm reports that incomplete requirements cause
downstream costs to increase exponentially!

* |ssues
— Computerization affects Environment
— “Report Effect”
— Lack of Visibility
— People are not used to attaining completeness

» Consider the construction of an airplane
— Many details are covered by standards...

Lecture 3 23

It costs too much!

 The waterfall was introduced when

— computer time more expensive than person time
« forced extensive desk planning
 use of time and space optimized

* Now, computer time is extremely cheap
— but our methods haven’t changed!

* The management of artifacts as the life cycle
progresses requires more and more resources

— New methods must focus on this information

management task
Lecture 3 24

It takes too long!

» Example Waterfall (> 400 important entities)
— 114 major tasks
— 87 different organizations
— 39 deliverables
— 164 authorizations

 All of this allows people to “talk” about the
project rather than “doing” the project!

* Inevitably, a project running too long, gets cut
short => results in incomplete or untenable system

Lecture 3 25

It takes too long! (continued)

 What to do?

— Experience will help

— CMM-like methods will increase the
organization’s ability to predict schedules

— Rules needed when project is shortened
» What requirements are removed?
* How is the system’s functionality scaled back?

Lecture 3 26

Too many variations!

» Key problems

— communication between practitioners

 each builds large systems but use
— different vocabulary
— different steps
— different deliverables

— Difficult to assess life cycle critically

» Problems are shared by all; but without common
understanding how are root causes found?

Lecture 3 27

End-User Communications Gap

“What we understand to be the conventional life
cycle approach might be compared with a
supermarket at which the customer is forced to
provide a complete order to a stock clerk at the
door of the store with no opportunity to roam the
aisles—comparing prices, remembering items not
on the shopping list, or getting a headache and
deciding to go out for dinner...”

[McCracken and Jackson, 1982]

Lecture 3 28

Communications Gap, continued

* User involvement throughout the life cycle
— Participatory Design field
» Watch out for communications gap within the

development team!

— Horizontal Team Integration considered bad
* Tends to be little review; no chance for self-correction

— Vertical Teams better; maintenance still a problem

Lecture 3 29

“What vs. How”

« Assumption
— Problem description can be separated from
problem solution
« Unfortunately, people don’t behave this
way!
— People like to consider a range of solutions
* What are the trade-offs?
* A solution strategy may help clarify the problem

Lecture 3 30

Error Management

 Itis impossible to predict all of the errors that a
software system must handle
» Thus, a module’s initial design is very likely to be
incomplete!
— Some errors may exist only because of a particular
implementation strategy
— if so, an implementation choice may then impact the
interface of the module (which is typically set during
design)

Lecture 3 31

