
Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract: An Overview
CSCI 5828

Michael M. Vitousek

University of Colorado at Boulder
michael.vitousek@colorado.edu

March 21, 2012

1 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Outline
1 Introduction

Motivation and Introduction
Simple Example
Contract Overview

2 Coding with Contracts
Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

3 Design by Contract
Design by Contract Methodology
History
Another Example

4 Conclusions
Conclusions
Resources and References

2 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

Outline
1 Introduction

Motivation and Introduction
Simple Example
Contract Overview

2 Coding with Contracts
Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

3 Design by Contract
Design by Contract Methodology
History
Another Example

4 Conclusions
Conclusions
Resources and References

3 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

Motivation (I)

One of the basic problems of software development: does our
program do what we think it does?

The first question is the essence of verification in software
engineering, and along with validation, it is one of the most
important questions of software development

There are multiple ways to verify software

The most common method is testing, including unit tests,
integration tests, etc.
A much more strenuous approach is proof via formal methods
— an extremely strong method of verification

4 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

Motivation (II)

Unfortunately, both these previous methods have
shortcomings:

It is difficult to build test cases that give full code, condition,
and or path coverage
And developing a full proof of a program can be extremely
difficult, and proofs can have errors (especially if not
mechanically checked)

We would like to have a method of verification that provides
stronger properties than testing alone, but which does not
require the effort and overhead of formal methods

5 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

Contracts

Fortunately, such a method exists!

Design by Contract, a.k.a. Code Contracts

Named in reference to enforceable legal contracts
Contracts are formal propositions (i.e. boolean expressions)
about the behavior of a software system [7]
Contracts let users specify strong requirements about programs
and program values

Design by Contract typically puts contracts the behavior of
individual methods or variables, but is very flexible

Contracts complement testing — if a program enters a faulty
state unforeseen by testing, contracts can reduce the impact
of the fault

6 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

A Simple Example (I)

Consider the following psuedocode:

function calculateThreadCount(double blockCoeff)
int numCores := getNumCores()
return (numCores/(1− blockCoeff))

end function

This program is the correct method for determining the
number of threads to use in a concurrent program
But it makes several assumptions

First, it assumes that blockingCoefficient is not a negative
number or a number greater than 1; if it is, the program would
behave in an unexpected manner
Second, it assumes that blockingCoefficient is not equal to 1;
if it is, the program will throw an exception or return some
special “not-a-number” value

7 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

A Simple Example (II)

In reality, we want to have stronger constraints on the
behavior of this procedure than that which is specified by its
code.

Specifically, we want:

0 ≤ blockCoeff < 1
1 ≤ function’s output

The condition on the argument is called a precondition,

And that on the return value is called a postcondition

We’ll expand on these definitions later

8 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

A Simple Example (III)

Contracts let us encode these rules in the definition of the
program:

Require: 0 ≤ blockCoeff < 1
function calculateThreadCount(double blockCoeff)

int numCores := getNumCores()
return (numCores/(1− blockCoeff))

end function
Ensure: output ≥ 1

Design by Contract is the methodology of software
development that holds that such conditions like these are
crucial parts of programming good software

9 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Motivation and Introduction
Simple Example
Contract Overview

Behavior of Contracts

Contracts allow code segments to be directly linked to their
specifications in a robust way

The use of contracts does not prevent failures from occurring
— contracts are checked at runtime, so it is possible to
compile and run programs that will violate contracts

But contracts cause such invalid programs to fail in an
expected manner, earlier rather than later, “blaming” the
code that caused the problem

Contract violations at worst cause the program to cease
execution, rather than proceeding in an unexpected way that
could cause confusing — or dangerous — failures later in
execution

10 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Outline
1 Introduction

Motivation and Introduction
Simple Example
Contract Overview

2 Coding with Contracts
Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

3 Design by Contract
Design by Contract Methodology
History
Another Example

4 Conclusions
Conclusions
Resources and References

11 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Using contracts

Contracts are often integral parts of the source code of a
program
Contracts tend to be easy to define and write if you know the
expected behavior of a program

Contracts are a verification tool — they help the user
determine if the program behaves as expected
They are not generally useful for validation

Not all languages support native contracts, but some that do
include

Eiffel
Spec# (based on C#)
Racket (based on Scheme)

Other languages may have libraries that enable non-native use
of contracts

12 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Assert statements

The most common form of a contract is an assert statement

Format: “assert b” where b is some boolean value
If b is true, then the program proceeds normally
If b is false, then typically an exception is thrown
If the assert doesn’t cause an exception, then the program can
assume that whatever property is being tested by b holds
thereafter (until the state of the program changes!)

assert statements can be used in many languages, even ones
that don’t generally support contracts (Java, C#)

13 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Preconditions and postconditions

Preconditions and postconditions are at the heart of design by
contract

Preconditions specify what kinds of input are expected
Postconditions specify what kinds of guarantees are provided
by the output

Pre- and postconditions can be seen as similar to type
annotations on arguments and return types

They both put constraints on the types of values that can be
passed in and out
But pre- and postconditions can reflect a much more refined
set of values than can be expressed in most type systems

14 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Invariants

While pre- and postconditions specify what has to be true
about a program before and after the execution of some of its
code, invariants specify what stays the same

An invariant is a property that is true when its code is
entered, stays true throughout it’s execution, and remains true
after it terminates

Invariants have a broader scope than other contracts:

Preconditions specify what is true at the point that execution
starts
Postconditions specify what is true when it terminates
Asserts specify something about an arbitrary point in code
But invariants are true at all points in its code

15 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Other contracts

Pre- and postconditions are the most important contracts
used in Design by Contract, but there are other kinds of
contracts we might want to enforce

Non-null: we can require that variables not be null references
Side effects: we can limit or specify the ways that a method
can effect global state
Exceptions thrown: what kinds of errors should be allowed to
occur

16 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Computational contracts

Similarly to the case of concurrent program design, how
Design by Contract is applied depends on what kind of
program is being designed

“Computational programs” are those which take an input,
perform some kind of computation on it, and produce some
kind of output

Contracts for computational programs specify “what we are
tying to achieve with the contract”[7].

They put constraints on the kind of data that is provided as
the input,
specify what has to be true of the resulting output for the
computation to be correct,
and give invariants about the state and form of the
intermediate computation.

17 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Protocol contracts

In contrast, interactive programs depend on interaction with
external systems — a user, other programs, or other
computers

The computational view of contracts is insufficient for this
situation

In interactive situations such as a computer game the notion
of a “correct output” is unclear

Instead, protocol contracts specify how a program interacts
with other entities in its context

Protocol contracts on I/O dependent programs won’t specify
the “correct answer” of the program, but rather who it should
communicate with, how, and when.

18 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Substitutability

Both computational contracts and protocol contracts are
designed to allow substitutability[7]

Two methods, functions, modules, etc are substitutable when
they have the same set of contracts on them
Therefore, they act essentially the same way, regardless of
differences in implementation

Two different sorting algorithms will still have the same
overall contracts about their behavior

Two different AIs for a computer game will still perform the
same kinds of queries and actions

19 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Inheritance and subtyping with contracts

Design by Contract is often applied to object-oriented
languages that have important notions of inhertitance and
subtyping
Subclasses are allowed to strengthen postconditions on the
methods they share with their superclasses

This is natural — by strengthening the postconditions,
subclasses maintain at least the requirements of their
superclasses on what kinds of values are returned

Less obviously, subclasses are allowed to have weaker
preconditions

This ensures that any argument to a superclass’ method which
passes its preconditions will also pass the subclass’
preconditions, and maybe the subclass doesn’t require all the
properties that the superclass does — not a problem!

20 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Contract failures (I)

Up until now, we’ve mostly been talking about what contracts
guarantee

But it’s also important to understand what happens when
contracts are broken

When the boolean proposition of a contract is false when
executed, the program must not continue as if nothing has
happened — it should “fail hard”

This typically results in the termination of the program’s
execution in some way
Assertion failures are not meant to be recoverable
E.g., in Java, “assert false” will cause an AssertionError, and
the JDK documentation discourages trying to catch these
errors [10]

21 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Contract failures (II)

This approach can seem extreme — why can’t we try to
recover from a contract violation?

The reasoning behind this can be compared to type errors:

In a statically-typed language like Java, if we try to pass a
boolean into a function that expects a double, our program
won’t even compile
Likewise, when an int with value 42 is passed into a function
whose precondition specifies that its arguments are in the
range [0, 9], we have performed an operation so nonsensical
that the program should simply halt

However, we do want to know what code is responsible for the
contract violation, in order to debug properly

22 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

Blame tracking

In order to achieve this, we use blame tracking
Blame tracking arises from the intuition that the point in code
at which a contract violation occurs may not be the point at
which a fault exists in the code
Instead, it may be in the function that called the failing
function, or the function that called that function
Blame tracking can precisely trace these failures back to their
origin
Simple blame tracking can be achieved using similar
techniques to stack traces

In more complex situations, such as violations induced by type
casts, more advanced techniques under active research need to
be used[1]

23 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

Outline
1 Introduction

Motivation and Introduction
Simple Example
Contract Overview

2 Coding with Contracts
Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

3 Design by Contract
Design by Contract Methodology
History
Another Example

4 Conclusions
Conclusions
Resources and References

24 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

Design by Contract methodology (I)

The basic idea behind the Design by Contract methodology is
that the first elements of code written for a method, class, or
program should be its contracts

In DbC, contracts are a critical step between understanding
what a program should do and implementing a program that
does it:

Once the programmer understands what a section of code
should do, he or she can write contracts for it
Once contracts have been written, it is more clear what the
actual implementation should be

25 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

Design by Contract methodology (II)

Contracts therefore serve several complimentary roles in
software development, in addition to their role in preventing
dangerous program behavior:

Contracts embed the specification of a program into its code
Contracts aid in code reuse by making clear what kinds of
context a section of code can be used in
Contracts, if sufficiently readable, document the behavior of a
program

Design by Contract is therefore complimentary to other
methodologies and means of verification, including automatic
test generation [6]

26 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

What contracts aren’t

Contracts are great, but developers using Design by Contract
shouldn’t overstate its abilities
Contracts don’t prevent programs from entering states that
violate its contracts, they just prevent such programs from
proceeding
Contracts don’t replace unit testing

Unit testing should examine the behavior of code when its
assumptions are met
Contracts prevent those assumptions from not being met

Contracts aren’t behavior-driven development

Although pre- and postconditions look something like
Cucumber scenarios, they operate at different levels
BDD scenarios are high level, black box tests, while contracts
enforce very specific, low level properties

27 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

History

The theory of contracts was developed from the system of
Hoare Logic

Hoare Logic is a system for reasoning about the behavior of
imperative programs based on the preconditions and
postconditions of program statements[5]

This logic was refined into a software engineering and
programming language by Bertrand Meyer in the Eiffel
language [3]

Advances in the use of design by contract and related
techniques have been made by the PLT group in Racket[1],
and by Microsoft in the Spec# language[2].

28 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

Another example (I)

Let’s consider how Design by Contract suggests we develop a
section of code.

Say we want to write a simple function that takes two
numbers a, b and returns an object containing members k, r
where k is the quotient of a and b and r is the remainder

That is, it should perform the Euclidian division algorithm

We begin by considering the constraints inherant to this
algorithm:

a and b need to be integers, and b needs to be nonzero
k and r need to be integers, and the property of a = bk + r
needs to hold

29 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

Another example (II)

The constraint that the arguments and returned values need
to be integers is best handled by the type system

But the other constraints are a job for contracts!

Let’s come up with some pre- and postconditions:

Require: b 6= 0
function divisionAlgorithm(int a, int b)

//Unimplemented
end function

Ensure: a = b× output.k + output.r

Now that we have the pre- and postconditions, we can write
the function itself such that it matches those specifications...

30 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Design by Contract Methodology
History
Another Example

Another example (III)

...as such:

Require: b 6= 0
function divisionAlgorithm(int a, int b)

int r := a % b
int k := (a− r)/b
return {k, r}

end function
Ensure: a = b× output.k + output.r

Therefore, our initial development of contracts has:

Helped us write the function
Ensured that our function won’t have silent failures that
propogate to other parts of the program,
And documented the behavior of the function, improving
readability and reusability

31 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Conclusions
Resources and References

Outline
1 Introduction

Motivation and Introduction
Simple Example
Contract Overview

2 Coding with Contracts
Using Contracts
Types of Contracts
Computational and Protocol Contracts
Contract failures

3 Design by Contract
Design by Contract Methodology
History
Another Example

4 Conclusions
Conclusions
Resources and References

32 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Conclusions
Resources and References

Conclusions

Contracts are elements of code that enforce constraints and
specifications about the runtime state of a program

Contracts can be adapted to lots of different situations,
including both interactive and computational programs
Contracts typically test low-level properties at method, class,
or module boundaries
When contracts are violated, the program should fail-stop to
prevent non-conforming data from spreading through the
program

Design by Contract uses contracts throughout the design
process

Contracts bridge the gap between the coder’s mental
understanding of what a method should do, and the
implementation of the method
Design by Contract is not a substitute for unit testing or
verification, but it complements those approaches very well

33 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Conclusions
Resources and References

Resources

Advances in Object-Oriented Software Engineering, chapter
“Design by Contract” by Bertrand Meyer [8]

“The Power of Design by Contract” by Eiffel Software [3]

“Spec#” by Microsoft [9]

“The Racket Guide,” chapter “Contracts” by Matthew Flatt,
Robert Bruce Findler, and PLT [4]

34 / 35



Introduction
Coding with Contracts

Design by Contract
Conclusions

Conclusions
Resources and References

All references
Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and
Philip Wadler.
Blame for all.
In POPL ’11, pages 201–214, New York, New York, USA,
2011. ACM.

Mike Barnett, Manuel Fähndrich, Rustan M. Leino, Peter
Müller, Wolfram Schulte, and Herman Venter.
Specification and verification: the Spec# experience.
Communications of the ACM, 45(6):81–91, 2011.

Eiffel.
The Power of Design by Contract.

Matthew Flatt, Robert Bruce Findler, and PLT.
The Racket Guide.

Tony Hoare.
An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, October 1969.

Lisa (Ling) Liu, Bertrand Meyer, and Bernd Schoeller.
Using contracts and boolean queries to improve the quality of
automatic test generation.
In TAP ’07, pages 114–130, 2007.

Ashley McNeile.
A framework for the semantics of behavioral contracts.
In Workshop on Behavioral Modeling ’10, pages 1–5, 2010.

Bertrand Meyer.
Design by Contract.
In Dino Mandrioli and Bertrand Meyer, editors, Advances in
Object-Oriented Software Engineering, pages 1–50. Prentice
Hall, 1991.

Microsoft.
Spec#.

Oracle.
Java Platform, Standard Edition 6 API Specification, 2006.

35 / 35


	Introduction
	Motivation and Introduction
	Simple Example
	Contract Overview

	Coding with Contracts
	Using Contracts
	Types of Contracts
	Computational and Protocol Contracts
	Contract failures

	Design by Contract
	Design by Contract Methodology
	History
	Another Example

	Conclusions
	Conclusions
	Resources and References


