
Advanced Java
Concurrency Framework

 By Nisarg Shah

Rutvi Joshi

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Concurrency in Java

• Developers had to create their own solution to solve
concurrency problems

• Such codes may be prone to many bugs

• The existing primitives in Java do not provide much granularity
for concurrency

• These primitives may not always scale for real situations

• The Java Concurrency Framework abstracts some of this
complexity away

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

The Framework

• Replaced existing and limited Java support for concurrency

• Even updated JVMs to include support for new functionality

• Provided with utility classes commonly used for concurrent
programming in Java with these packages:

• java.util.concurrent

• java.util.locks

• java.util.atomic

• Easy to use, understand, provides a standard, higher
performance

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

What’s New ?

• Synchronizers

• Callable <T> and Future <T>

• Executor Service and Thread Pool

• Atomic <T>

• Locks and Latches

• Fork-Join

• Queues

• Software Transactional Memory

• Barriers

• Exchangers

• Concurrent Collections

Advanced Java Concurrency Framework

- By Nisarg Shah and Rutvi Joshi

Software Transactional
Memory

• Provides an alternative to lock-based and actor-based
concurrency mainly for applications with shared memory

• Similar to database transactions with ACID characteristics
(though minus Durability)

• Works best with programming languages that differentiate
mutable and immutable variables and require transactions to
change mutable variables like Clojure and Haskell

• There are multiple STM implementations for various
languages including Java (apart from Clojure and Akka)

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

STM Implementations

• Deuce STM
• Open source Java support for STM

• Generates highly concurrent code

• Extensible Framework

• Multiverse
• Language Independent, all languages that run on the JVM

• 2011 release of Multiverse 0.7

• AtomJava
• Polygot extension that performs source-to-source translation

• Producing Java code which runs normally

• JVSTM
• Java Versioned Software Transactional Memory

• Two Core Concepts: Versioned Boxes and Transactions

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

http://www.deucestm.org/
http://multiverse.codehaus.org/overview.html
http://wasp.cs.washington.edu/wasp_atomjava.html
http://web.ist.utl.pt/~joao.cachopo/jvstm/

JVSTM Example

• JVSTM basically creates versioned copies of the shared data
and each such copy is related to a Transaction(TX)

• Consider a counter which is incremented and displayed by a
bunch of threads each defined as a TX

• Depending on which concurrent TX is working on counter,
That corresponding version is updated or displayed and then
committed to save that version

• Each TX updates its version, so an older TX updates its version
of the counter and if it is not the current version then the
changes do not percolate

Advanced Java Concurrency Framework

- By Nisarg Shah and Rutvi Joshi

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Barriers (I)

• Similar to Latches, difference is the
barrier waits on all the threads to
reach a common point.

• In Java the barriers are referred to
as CyclicBarrier because they can
be reused.

• The threads wait on the Barrier by
calling await() on it.

• There is BrokenBarrierException if
the await() for a particular thread
times out waiting on the barrier.

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Barriers (II)

• Partitions should be small so that threads do not have to
wait for a long time.

• Useful when all threads need to reach a point
simultaneously for further operation.

• Better then Latches as Barriers can be reused.

• Syntax

-CyclicBarrier(int no_of _threads)

-CyclicBarrier(int no_of_threads, Runnable BarrierAction)

 BarrierAction – task done after barrier is tripped

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Example

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Explanation

• In the above code be pass a matrix to a solver class to achieve
some processing on the rows of the matrix.

• We create a number of threads equal to the number of rows
(N).

• In our case it is a method where we merge all processed rows.

• We generate N worker threads which process the respective
rows and await on the barrier.

• In mergerows() depending on the row number we can
combine the results of independent rows.

• Thus we achieve concurrency without using locks and latches
in a much neater way.

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Exchangers

• Two way Barrier.

• Thread safe way of exchanging objects between threads.

• Useful when two threads perform asymmetric tasks.

• Syntax :

- Exchange(TypeObject, long timeout, timeunits):

Exchange object when both threads at exchange point. Time out
after timeunits if other thread does not arrive at exchange point.

Advanced Java Concurrency Framework

- By Nisarg Shah and Rutvi Joshi

Example

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Explanation

• In the above code there are two threads. One threads fills up a
data buffer and the other thread reads the buffer.

• Here the FillingLoop fills up the buffer until the buffer is
completely full and then exchanges the filled buffer for an
empty buffer obtained from the Emptyingloop task.

• Here both threads need to wait at the exchange step for both
the buffer conditions to satisfy.

• This approach involves least number of excahnge operations
but can lead to delay in case of unpredictable input data rate.

• Another approach that can be used is exchanging partially
filled data buffers thus reducing delay but increasing the
exchanges leading to more overhead.

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Concurrent Collections

• Includes data structures used for thread safe programs.

• In JDK 1.2 there were synchronization collections such as
Vector and HashTables.

• General operations involve iterations(continuous fetching
from data structure), Navigation , put-if-absent operation.

• In addition to these to collections we require additional locks
to ensure expected behavior.

• This makes the performance of these collections very similar
to sequential version.

 Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Example

Vectors used without
Synchronization.
In this case if one thread deletes
the last entry and the another
thread tries to read that value it
throws an
ArrauOutOfBoundsException.

The Synchronized keyword is
used to ensure that only one
thread does the change to the
list.
This reduces the performance of
the code in terms of execution
time.

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

Concurrent Collections (II)

• In JDK 5.0 the old synchronization collections are replaced by
new Concurrent collections.

• They include ConcurrentHashMaps and
ConcurrentOnWriteArrayList which are replacements for the
old Synchronized list and HastTables.

• There are two new types which are Queue and Blocking
Queues.

• Java 6 also includes ConcurrentSkipListMap and
ConcurrentSkiplistSet which are replacements for
synchronized SortedMap and SortedSet.

Advanced Java Concurrency Framework

- By Nisarg Shah and Rutvi Joshi

ConcurrentHashMap

• Improved Concurrency and Scalability.

• Finer-grained locking mechanism called as striping.

• Striping involves splitting up of locks on the HashMap rather
than having just one lock.

• This allows multiple threads to read and write to the data
structure thus improving throughput.

• There are few trade-offs in terms of the methods operating on
the entire structure such as isEmpty and size as they return
approximate value.

Advanced Java Concurrency Framework

- By Nisarg Shah and Rutvi Joshi

ConcurrentHashMap

• We can very easily achieve complex functions such as
PutIfAbsent, remove replace.

• These functions are thread safe and very efficient.

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

CopyOnWriteArrayList

• Immutable structure

• Creates a new copy of the List on any change

• Unlike ConcurrentHashMap only one write operation can be
performed at a time.

• The Write operation does not block the read threads.

• The read operation will never return an intermediate value.

• Huge advantage for a case where reads are more than writes.

• AtomicArray give better results when the there are no write
operations involved.

Advanced Java Concurrency Framework

- By Nisarg Shah and Rutvi Joshi

Conclusion

• This was a brief overview of some of the other utility classes
of the Java Framework

• There is lots more still left to be explored

• But it reinforces that, compared to the manually trying to
synchronize all threads and the contentions surrounding it..

• Java Framework provides a lot of flexibility to the concurrent
developer

• Thank You

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

References

• Books:

• The Pragmatic Programmers: Programming Concurrency on the
JVM

• Java Concurrency in Practice

• Links:

• http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurren
t/package-summary.html

• http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/C
yclicBarrier.html

• http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurren
t/Exchanger.html

Advanced Java Concurrency Framework
- By Nisarg Shah and Rutvi Joshi

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/package-summary.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/6/docs/api/java/util/concurrent/CyclicBarrier.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/Exchanger.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/Exchanger.html

