
Git
David Parker

CSCI 5828 - Presentation

● What is Git?
● History
● Features/Benefits
● Understanding Git
● How to's
● Git Internals

Outline

● Other Useful Related
Tools

● What projects use
Git?

● Other Open Source
VCS' and DVCS'

● References

What is Git? (I)

1. Version Control System (VCS)
○ Keep different versions of files over time
○ Keep history of who changed what in a file
○ Generally maintained in a database or repository
○ Commonly centralized, though distributed VCSs

have been in growing usage

2. Open Source

○ The source code is available so that anyone can see
it, and modify it as needed

3. Fast

What is Git? (II)

4. Distributed VCS (DVCS)
○ No centralized server required
○ Every client mirrors the entire repository, not just the

latest snapshots
○ Able to have several remote repositories
○ Allows for different workflows not able to be used

with centralized VCSs
5. Designed to handle very large projects with

speed and efficiency, as well as small
repositories

6. Distributed Source Control Management tool
(DSCM)

Originally written by Linus Torvalds, creator of
Linux

Maintained by Junio Hamano

The name:

○ Quoting Linus: "I'm an egotistical bastard, and I
name all my projects after myself."

History (I)

Linux originally used BitKeeper, which was
proprietary, but had a falling out in 2005

○ Linus wanted a distributed system similar to
BitKeeper, but none of the free systems did what he
wanted

○ Linus needed something that was fast
○ Linus was merging as many as 250 patches at a

time, which at 30 seconds, takes nearly 2 hours
Linus thinks CVS is terrible: "I hate it with a
passion"
Similarly, if Subversion is "CVS done right," then it
is also bad: "There is no way to do CVS right"

History (II)

Features / Benefits (I)

Cheap Local Branching
Git's most compelling feature that makes it stand apart from nearly every other
SCM out there is its branching model. Git will allow you to have multiple
branches that can be entirely independent of each other and the creation,
merging, and deletion of those lines of development takes seconds. When you
push a remote repository, you do not have to push all of your branches.
This means you can do things like:
● Create a branch to test out an idea, commit a few times, switch back to

where you branched from, apply a patch, and switch back to where
experimenting and merge it in.

● Have a branch that always contains only what goes into production,
another that you merge work into for testing and several smaller ones for
day to day work.

● Create new branches for each new feature you're working on, then delete
each branch when that feature gets merged into your main line.

● Create a branch to experiment in, realize it's not going to work and just
delete it, with nobody else seeing it (even if you've pushed other branches)

Features / Benefits (II)

Everything is Local
There is very little outside of 'fetch', 'pull' and 'push' that
communicates in any way with anything other than your
hard disk.
This make most operations much faster than most SCMs.
This also allows you to work on stuff offline.
You can work on a train or a plane!
You can do a fetch before going offline and later do
comparisons, merges, and logs of that data but not yet in
local branches.
This means it is super easy to have copies of everyone's
branches that are working with you in your Git repository
without messing up your own stuff.

Features / Benefits (III)

Git is Fast
The fact that all operations are performed locally makes Git incredibly fast
compared to other SCMs like Subversion and Perforce, both of which require
network access for certain operations.
Another reason Git is fast is due to the fact that the primary developers made
this a design goal of the application.
Here is a comparison of Git with Mercurial and Bazaar:

Note that the 'add' looks slower, but this for adding over 2000 files, something
most people don't do daily.

Features / Benefits (IV)

Git is Small

Git is really good at conserving disk space.

Here's a comparison using the Django project:

Features / Benefits (V)

The Staging Area
Git has something called the "staging area" or "index".
This is an intermediate area that you use to setup what you
want your commit to look like before you commit.
You can easily stage some files as they're finished and
commit just those files and not all the modified files.
You can also stage only portions of a modified file.
You can also
 skip the
 staging area
 if you don't
 need it.

Features / Benefits (VI)

Distributed

One of the best features of any Distributed SCM is that they
are distributed by their nature .

This means that you "clone" an entire repository rather than
"checkout" the current tip of some source code.

Even if you use a centralized workflow, every user
essentially has a full backup of the main server, which
means there is no single point of failure with Git.

Features / Benefits (VII)

Any Workflow Integration Manager
Due to Git's distributed nature and
branching system, you can implement
any workflow you want.

Subversion-Style
 Dictator and Lieutenants:

Easy to Learn
In Git's early life, it wasn't a true SCM, but a bunch of tools
that allowed someone to do versioned filesystems in a
distributed manner.

Here's a quick
difference between
Git and Mercurial
help (highlighted ones
are near identical):

Features / Benefits (VIII)

Unlike other VCSs that typically think about
data as changes, Git thinks of changes as
snapshots

○ Snapshot of a mini filesystem
○ To be efficient, if a file hasn't changed, then Git links

to the previous identical file it has already stored

Understanding Git

Everything in Git is check-summed before it is
stored and then referred to by that checksum.

○ Impossible to change contents of file or directory
without Git knowing about it

○ Can't lose information in transit or get file corruption
without Git knowing about it

Checksumming via SHA-1 hash

○ 40-character string composed of hexadecimal
characters (0-9 and a-f)

Integrity

Three main states that a file can reside in:

1. Committed

○ Data safely stored in local database
2. Modified

○ Changed a file but not yet committed it to database
3. Staged

○ Marked file in current version to go into next commit
snapshot

Three States

1. Git Directory (repository)
○ Where Git stores metadata and object database for

the project.
○ What is copied when you clone a repository.

2. Working Directory
○ Single checkout of one version of the project.

3. Staging Area
○ A file that stores information about what will go into

your next commit.
○ Also referred to as the index.

Three Main Sections

Three Main Sections (Picture)

Next, we'll take a look at doing a ton of different
stuff in Git.

How to's

● Install/Set
up/Help

● Creating a repo
● Cloning a repo
● Status of files
● Adding files
● Committing files
● Staged Files
● Ignoring Files
● Diff-ing files

● (Re)moving files
● Logging
● Undoing Changes
● Working w/remote
● Tagging
● Branching
● Merging
● Rebasing
● Git on the Server
● And more...

How to: Install Git (I)

Git is available on Linux, OSX, and Windows

Install from Source:
● http://git-scm.com/download

○ Follow instructions (compile and install)

On Linux via package managers:
● (yum|apt-get) install git-core

How to: Install Git (II)

On Mac:
● via Graphical Installer:

○ http://code.google.com/p/git-osx-installer
● via MacPorts:

○ sudo port install git-core +svn +doc
+bash_completion +gitweb

Windows:
● via msysgit

○ http://code.google.com/p/msysgit

How to: Setting up Git

Modify configuration file:
● ~/.gitconfig OR .gitconfig in $HOME on Windows
Identity:
● git config --global user.name "David Parker"
● git config --global user.email

davidwparker@gmail.com
Editor:
● git config --global core.editor emacs
Check Settings
● git config --list

How to: Getting Help

Any of the following commands work:
● git help <verb>
● git <verb> --help
● man git-<verb>

How to: Create a Repository

In order to create a git repository, cd into the
directory you would like to create the repository
and type the command:
● git init

How to: Clone a Repository

● git clone <url> <optional different directory>
● git clone https://github.

com/davidwparker/opengl-3defense.git
<optional different directory>
○ This will clone a git repository into your working

directory in directory opengl-3defense
○ Or add a different directory by adding the directory

name after the <url>

How to: Checking the Status of Files

You can check the status of files in your Git
repository very easily:
● git status

Lifecycle (status) of Files

How to: Adding Files

Add a file easily:
● git add <filename> OR git add *.<type>

How to: Commit New Files

Easily commit new files:
● git commit

○ Launches editor of choice for git commit message
Alternatively:
● git commit -m 'inline commit message'

How to: Staged Files

A staged file is a file that has previously been
committed and has since been changed.

How to: Commit Staged Files

Committing staged files is the same as
committing new files:
● git commit

○ Launches editor of choice for git commit message
Alternatively:
● git commit -m 'inline commit message'

How to: Ignore Files (I)

You can ignore files and filetypes with .gitignore
● touch .gitignore
● emacs .gitignore

● will ignore temporary files that are marked

with a ~, which is common with editors such
as Emacs.

● You can also add directories

How to: Ignore Files (II)

The rules for the patterns of what can be in the
.gitignore file:
● Blank lines or lines starting with # are

ignored
● Standard glob patterns work
● You can end patterns with a forward slash (/)

to specify a directory
● You can negate a pattern by starting with an

exclamation point (!)

git diff is used for multiple reasons, but the
most common is to see what has changed but
not yet staged.
● git diff

How to: Diff (unstaged changes)

If you've added files to staging, and you'd like
to see what the diff of those changes, simply
use the following:
● git diff --staged

How to: Diff (staged changes)

How to: Remove Files

● git rm <file>

Now the removal of the file is ready to be
committed.
Note the file is removed from the file system as
well (it can be kept with the --cached flag)

Git technically doesn't keep track of file
movement, but does offer a way to move files.
● git mv <file> <newfile>

This is the same as running the commands: git
rm --cached orig; mv orig new; git add new

How to: Move Files

How to: Log (I)

By default, git log lists commits in a repository
in reverse chronological order.

It lists commit with SHA-1 checksum, author's
name and email, date written, and commit
message.

See the next slide for an example.

How to: Log (II)

● git log

How to: Log (III) - Options

● --pretty=format:"YOUR FORMAT"
○ Very powerful way to specify own log output format

● -p => shows diff introduced in each commit
● -# => shows only the last # commits.
● --oneline => shows commits one one line

● many, many more!

How to: Undoing Changes

Changing last commit:
● git commit --amend

Unstaging a staged file:
● git reset HEAD <filename>

Unmodify a modified file:
● git checkout -- <filename>

○ Warning: this overwrites the file, so you will lose any
changes that you made. You sparingly.

How to: Working with Remote (I)

Remote repositories are versions of the project
on the Internet or network.

If this is a locally created git repository, then
you won't see any git remotes:
● git remote

If it isn't local, you will see origin:

How to: Working with Remote (II)

You can also see the URL git has stored:
● git remote -v

How to: Adding Remote

You can easily add a remote repository as well:
● git remote add <shortname> <url>
● git remote add origin git@github.com:

davidwparker/git.git

Pushing to remote allows us to push our
repository to the remote repository:
● git push <remote name> <branch name>
● git push origin master

Pushing will be rejected if someone else has
since pushed upstream

How to: Push Remote

How to: Fetch Remote (I)

Fetching from a remote will pull down data you
don't have yet.

It pulls the data into your local repository, but it
doesn't automatically merge it with any of your
work, or modify what you're currently working
on.

How to: Fetch Remote (II)

● git fetch origin

In this example, I made changes on github.com
and then fetched them into my repository.

You can easily rename a remote
● git remote rename <old> <new>

Or remove a remote
● git remote rm <name>

How to: Changing Remotes

How to: Tagging

Tagging allows Git to forever remember a
snapshot of a repository.

There are two types of tags in Git:
● Lightweight: a pointer to a specific commit
● Annotated: full objects in the Git database

It is recommended to use annotated tags.

How to: Creating an Annotated Tag

Annotated tagging is extremely easy:
● git tag -a <tagname> -m 'a message'

As you can see, you can also list tags with the
command:
● git tag

How to: Creating a Signed Tag

Signed tagging is extremely easy:
● git tag -s <tagname> -m 'a message'
This uses GPG (GNU Privacy Guard)
The GPG signature can be seen using:
● git show <tagname>

You can verify a signed tag as long as you
have the signer's public key:
● git tag -v <tagname>

How to: Creating an Lightweight Tag

Lightweight tagging is extremely easy:
● git tag <tagname>

This will create a lightweight tag. Lightweight
tags cannot use the -a, -s, or -m flags.

How to: Tagging later

If you forgot to tag, you can check your
commits with:
● git log --pretty=oneline

And then tag using the checksum:
● git tag -a <tagname> <checksum>

How to: Pushing Tags

Tags aren't pushed when doing a push, you
need to specify them
● git push origin <tagname>
● git push origin --tags
Use the latter to push all tags

How to: Branching

One of Git's most powerful features is its
branches.

Git's branches are incredibly lightweight, and it
is nearly instantaneous to switch back and forth
between branches.

Git encourages a workflow that branches and
merges often, even multiple times a day.

How to: Why Branch?

A realistic workflow may be as follows:
1. Working on an app
2. Create a branch for a story you're working

on
3. Do some work
Then, you get a call for critical hotfix needed:
1. Revert back to production branch
2. Create branch for hotfix
3. Test hotfix and merge the branch, push to

production
4. Switch back to original story and continue

work

How to: Creating a branch

Creating a branch is incredibly easy:
● git branch <branch name>

This creates a pointer to the same commit
you're currently on.
As you can see above, you can easily list what
branches there are, as well as see your current
branch (marked with *)
● git branch

Switching to another branch is easy as well:
● git checkout <branch name>

Work can then be completed on that branch:

How to: Branching

How to: Branching

You can also easily checkout a branch when
you create it:
● git checkout -b <branch name>

When you are completely done with a branch,
you can easily delete it:
● git branch -d <branch name>

How to: Merging (I)

If you don't edit a branch, and then merge
another branch where you have changed
things, then Git performs a fast forward.
● git merge <branch name>

How to: Merging (II)

If you do edit a branch, and then merge another
branch where you also have made edits, then
Git performs a three-way merge: the common
ancestor snapshot, the merged branch, and the
merging branch.
● git merge <branch name>

How to: Merging Conflicts (I)

If you edit a branch, and attempt to merge
another branch where you have edited the
same part of the same file, you may end up
with a conflict.
● git merge abranch

How to: Merging Conflicts (II)

You can see what has changes with git status

Open this file in your editor and you can see
where the conflict is:
 Changes made in HEAD are
 above ======= and changes
 made in branch are below.

How to: Merging Conflicts (III)

After you change the file as you like, remove
thing <<<<<<<, =======, and >>>>>>> lines,
then you can add the file normally with git add.

How to: Branching (log)

Now that we have merged, if we do a log, we
can actually see the branches (in ASCII, on the
left):
● git log --pretty=oneline --graph

How to: Branching tips

You can easily see what branches you have
already merged with your current branch:
● git branch --merged

Or not merged:
● git branch --no-merged

How to: Remote branches

Remote branches work similarly to local
branches, except that they take the form
<origin>/<branch>.
In general, you must remember to "git fetch"
from remote to get the latest.
From there, you don't get that work in your
working directory, but you can merge it with "git
merge origin/<new branch>"
And you must "git push" to push the latest to
the remote repository.

How to: Rebasing (I)

Rebasing is another tool that allows you to
integrate changes from one branch to another.
Rebasing allows you to take all the changes
that were committed on one branch and replay
them on another branch.

In this example, I made changes on both
rebased and master, then replayed the master
changes on rebased.

How to: Rebasing (II)

At this point, you can go back to master and
fast forward.

The most often usecase for rebase is to make
sure your commits apply cleanly to a remote
branch.
Rebasing is great for cleaning up when you
have made a ton of 'unnecessary' commits.

How to: Rebasing (III)

If you follow the previous workflow, you'll be ok.
Otherwise, a warning: do not rebase commits
that you have pushed to a public repository.

When you rebase, you're abandoning existing
commits and creating new ones that are similar
but different.

Only rebase commits that you haven't push
publicly.

So far, everything has been related to using Git
on the client. However, in order to work with
others, then someone is going to need to set up
a server.
You can push/pull from individual repos, but
that's typically frowned upon, as it may confuse
who has what files.

Personal note: I didn't set up a personal server,
but choose to use the excellent web app
GitHub

How to: Git on the Server (I)

To run a Git server, all you need is to choose
protocols you want your server to communicate
with:
● Local
● SSH
● Git
● HTTP(S)

How to: Git Server Protocols (I)

Local
● git clone /opt/git/project.git

● Pros

○ Useful with shared filesystem
○ Quick to grab others' work

● Cons
○ May be harder than just sharing over network

How to: Git Server Protocols (II)

SSH
● git clone ssh://user@server:project.git

● Pros

○ Generally already set up (or easy to set up)
○ Authenticated network protocol
○ Used for writes anyway
○ Efficient

● Cons
○ Can't serve anonymous access to the repositories

How to: Git Server Protocols (III)

Git
● git clone git://user@server:project.git

● Pros

○ Fastest protocol available
● Cons

○ Read only
○ Lacks authentication

How to: Git Server Protocols (IV)

HTTP(S)
● git clone http://user@server:project.git

● Pros

○ Easy to set up
○ Commonly used protocols (so corporate firewalls are

still generally okay)
● Cons

○ Read only
○ Inefficient for the client

How to: Git Server Protocols (V)

Get a bare repository
● git clone --bare my_project my_project.git
A bare repository is a repository without a
working directory

Put the bare repository on the server
● scp -r my_project.git user@git.example.com:

/opt/git
Puts my_project under /opt/git
Now just set up your protocols

How to: Setting up the Git Server

At this point you would set up SSH, git, or
another protocol.

Setting up the protocols exactly is beyond the
nature of this presentation, but know it's not too
difficult to set up.

How to: More on the Protocols

How to: All the Rest (I)

Git's capabilities seem to go on and on. At this
point, I'm going to name drop a few of the other
things that Git can do, but without going into
much detail (I have too many slides already)

● Revision Selection
○ Git allows you to specify specific commits or a range

of commits in several ways

● Interactive Staging

○ Command line scripts to make some issues with
staging easier.

How to: All the Rest (II)

● Stashing
○ Used when you need to do work on another branch

suddenly, but your current work is half-completed
and you don't want to commit it yet.

● Rewriting History
○ Useful for when you need to rewrite a commit so that

it looks a certain way

● Debugging
○ Git uses bisect (binary search) to help determine

where code may have become bad

How to: All the Rest (III)

● Submodules
○ Great for using a project within a project

● Git Hooks
○ Program the system to automatically do something

after you perform a commit, or another git action.
○ Used on client or server

● Much, much more.

When you create a Git repository, Git creates a
.git folder, which is where almost everything Git
stores and manipulates is located.

Inside the .git folder, there are four core parts:
● HEAD file
● index file
● objects directory
● refs directory

Git Internals (I)

Two data structures:
● mutable index that caches information about the

working directory and the next revision to be committed
● immutable, append-only object database

Object database objects:
● blob = content of file
● tree = directory
● commit = links trees together
● tag = container that contains reference to another object

and can hold metadata

Git Internals (II)

Git Internals (III)

Index connects object database and working
tree

Each object is identified by a SHA-1 hash of its
contents

Objects are stored in entirety using zlib
compression

At its core, Git is a key-value object store.
You can insert any kind of content into it, and it
will give you a key to access that content at any
time. All Git objects are stored as blobs.
● echo 'test' | git hash-object -w --stdin

○ hash-object stores data in the .git directory.
○ -w says to store the object
○ --stdin tells command to read from stdin, otherwise it

expects a file

Git Objects (I)

You can view the objects at any time with:
● find .git/objects -type f

Git Objects (II)

You can view the content of the Git objects:
● git cat-file -p <SHA-1>

Git Objects (III)

Tree objects solve the problem of storing the
filename and also allows you to store a group
of files together.

● git cat-file -p master^{tree}

master^{tree} specifies tree object pointed to by
last commit on the master branch.

Tree Objects (I)

Conceptually, Git stores something like this:

Tree Objects (II)

Commit objects store who saved snapshots,
when they were saved, and/or why they were
saved.
On a commit object, you can run the command:
● git cat-file -p <SHA-1>

Commit Objects (I)

You can also run git log on a SHA-1 of a
commit object to see the real Git history:

Commit Objects (II)

You can find the files that contain the SHA-1
values in the .git/refs directory.
If you are constantly referencing a specific file
by its SHA-1, then refs helps you to remember
those more easily.
Rather than: git log 1a40ae3...
You can do
● git update-ref refs/head/master 1a40ae3...
Then you get: git log master

Git References

The HEAD file is a symbolic reference to the
branch you're currently on.
Unlike a normal reference, it doesn't contain a
SHA-1 value, but a pointer to another pointer
When you run a git commit, it creates a commit
object, specifying the parent of that object to be
whatever SHA-1 value the reference in HEAD
points to. Read and write with the commands:
● git symbolic-ref HEAD
● git symbolic-ref HEAD refs/heads/different

The HEAD file

A tag object is like a commit object, except it
points to a commit rather than a tree.
It's like a branch reference, but it never moves
forward - it always points to same commit.
That's all a lightweight tag is (to be discussed
later) - a branch that never moves
With an annotated tag, Git creates a tag object
and then writes a reference to point to it rather
than the commit directly.

Tag Objects

Git has the ability to only store files and their
respective deltas, which is great when big files
get modified so you don't store the file twice.
● git gc | find .git/objects -type f

Packfiles (I)

As you can see, a majority of the Git objects
are gone, and now we have a .pack file.
Use verify-pack to see what was packed up:
● git verify-pack -v .git/objects/pack/<pack.idx>

Packfiles (II)

Other Useful Related Tools (I)

User Interface Tools:
● qgit: http://sourceforge.net/projects/qgit/
● Tig: http://jonas.nitro.dk/tig/

Tool Shipped with Git:
● gitk: Original TCL/TK GUI for browsing Git

repos history
● Git-gui: Simple TK based graphical interface

for common Git Operations
● gitweb: Full-fledged web interface for Git

repositories

Other Useful Related Tools (II)

Version Control Interface Layers:
● StGit: http://www.procode.org/stgit/
● Cogito: http://git.or.cz/cogito/

Public Hosting:
● repo.or.cz: http://repo.or.cz/
● GitHub: https://github.com/
● Gitorious: http://gitorious.org/

What projects use Git?

● Linux Kernel
● Ruby on Rails
● Android
● Drupal
● WINE
● X.org
● Eclipse
● GCC
● KDE
● Qt
● GNOME

● jQuery
● Perl5
● Debian
● VLC
● Rubinius
● PostgreSQL
● Puppet
● phpMyAdmin
● GNU Scientific

Library (GSL)
● Many more...

More Open Source VCSs and DVCSs

VCSs
● Subversion
● Concurrent

Versions System
(CVS)

● OpenCVS

DVCSs
● Bazaar
● Mercurial
● Darcs
● Fossil
● GNU arch
● Aegis
● Many more...

References
http://git.or.cz/index.html
http://git-scm.com/
http://progit.org/book/
http://gitref.org/
http://gitready.com/
http://whygitisbetterthanx.com/
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/List_of_revision_control_software
http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
https://git.wiki.kernel.org/articles/g/i/t/GitLinks_efb4.html
https://git.wiki.kernel.org/articles/g/i/t/GitProjects_8074.html
http://hoth.entp.com/output/git_for_designers.html
http://eagain.net/articles/git-for-computer-scientists/
http://schacon.github.com/git/everyday.html

