Git
David Parker
CSCI 5828 - Presentation

Outline

e \What is Git? e Other Useful Related
e History Tools

e Features/Benefits e \What projects use

e Understanding Git Git?

e How to's e Other Open Source
e Git Internals VCS'and DVCS'

e References

What is Git? (l)

1. Version Control System (VCS)

o Keep different versions of files over time

o Keep history of who changed what in a file

o Generally maintained in a database or repository

o Commonly centralized, though distributed VCSs
have been in growing usage

2. Open Source
o The source code is available so that anyone can see
it, and modify it as needed

3. Fast

What is Git? (ll)

4. Dlstrlbuted VCS (DVCS)

No centralized server required
o Every client mirrors the entire repository, not just the

latest snapshots
o Able to have several remote repositories
o Allows for different workflows not able to be used

with centralized VCSs
5. Designed to handle very large projects with
speed and efficiency, as well as small

repositories
6. Distributed Source Control Management tool

(DSCM)

History (I)

Originally written by Linus Torvalds, creator of
Linux

Maintained by Junio Hamano

The name:

o Quoting Linus: "I'm an egotistical bastard, and |
name all my projects after myself."

History (ll)

Linux originally used BitKeeper, which was
proprietary, but had a falling out in 2005

o Linus wanted a distributed system similar to
BitKeeper, but none of the free systems did what he
wanted

o Linus needed something that was fast

o Linus was merging as many as 250 patches at a
time, which at 30 seconds, takes nearly 2 hours

Linus thinks CVS is terrible: "l hate it with a
passion”

Similarly, if Subversion is "CVS done right," then it
IS also bad: "There is no way to do CVS right”

Features / Benefits (I)

Cheap Local Branching

Git's most compelling feature that makes it stand apart from nearly every other
SCM out there is its branching model. Git will allow you to have multiple
branches that can be entirely independent of each other and the creation,
merging, and deletion of those lines of development takes seconds. When you
push a remote repository, you do not have to push all of your branches.

This means you can do things like:

e Create a branch to test out an idea, commit a few times, switch back to
where you branched from, apply a patch, and switch back to where
experimenting and merge it in.

e Have a branch that always contains only what goes into production,
another that you merge work into for testing and several smaller ones for
day to day work.

e Create new branches for each new feature you're working on, then delete
each branch when that feature gets merged into your main line.

e Create a branch to experiment in, realize it's not going to work and just
delete it, with nobody else seeing it (even if you've pushed other branches)

Features / Benefits (ll)

Everything is Local

There is very little outside of 'fetch’, 'pull' and 'push’ that
communicates in any way with anything other than your
hard disk.

This make most operations much faster than most SCMs.
This also allows you to work on stuff offline.
You can work on a train or a plane!

You can do a fetch before going offline and later do
comparisons, merges, and logs of that data but not yet in
local branches.

This means it is super easy to have copies of everyone's
branches that are working with you in your Git repository
without messing up your own stuff.

Features / Benefits (lll)

Git is Fast

The fact that all operations are performed locally makes Git incredibly fast
compared to other SCMs like Subversion and Perforce, both of which require
network access for certain operations.

Another reason Git is fast is due to the fact that the primary developers made
this a design goal of the application.

Here is a comparison of Git with Mercurial and Bazaar:

Status Diff Branching

Commit (Lg) Commit (Sm)

Note that the 'ad —ll _.I lll ll -~ = I

most people don't do daily.

es, something

Features / Benefits (I1V)

Git is Small

Git is really good at conserving disk space.

Here's a comparison using the Django project:

Git Hg Bzr SVN
Repo Alone 24M 34M 45M
Entire Directory 43M 53M 64M 61M

Features / Benefits (V)

The Staging Area
Git has something called the "staging area" or "index".

This Is an intermediate area that you use to setup what you
want your commit to look like before you commit.

You can easily stage some files as they're finished and
commit just those files and not all the modified files.

You can also stage only portions of a modified file.
You can also

Sklp the | working directory working directory
i git add
Staglng drea e staging area git commit -a
|f you don't git commit
need it. repository | repository

Features / Benefits (VI)

Distributed

One of the best features of any Distributed SCM is that they
are distributed by their nature .

This means that you "clone" an entire repository rather than
"checkout" the current tip of some source code.

Even if you use a centralized workflow, every user
essentially has a full backup of the main server, which
means there is no single point of failure with Git.

Features / Benefits (VII)

Any Workflow Integration Manager

Due to Git's distributed nature and

blessed

branching system, you can implement repository i vl

any workflow you want. T t I

S u bve rs | on _Sty | e integration developer developer
manager private private

Dictator anda Lieutenants:

shared repository

dictator -

> blessed repository

lieutenant
developer developer developer lieutenant \ \

developer developer developer developer

Features / Benefits (Vi)

Easy to Learn

In Git's early life, it wasn't a true SCM, but a bunch of tools
that allowed someone to do versioned filesystems in a

distributed manner.

Mercurial Help

Here's a quick clons

difference between

init

Git and Mercurial

help (highlighted ones
are near identical): serve

update

add the specified files ...
show changeset informati...
make a copy of an existi...
commit the specified fil...
diff repository (or sele...
dump the header and diff...
create a new repository ...
show revision history of...
merge working directory ...
show the parents of the ...
pull changes from the sp...
push changes to the spec...
remove the specified fil...
export the repository vi...
show changed files in th...

update working directory

Git Help

add Add file contents to the index
bisect Find the change that introduce...
branch List, create, or delete branches

checkout Checkout a branch or paths to ...

clone Clone a repository into a new ...
commit Record changes to the repository
diff Show changes between commits, ...
fetch Download objects and refs from...
grep Print lines matching a pattern
init Create an empty git repository
log Show commit logs

merge Join two or more development h...
mv Move or rename a file, a direc...
pull Fetch from and merge with anot...
push Update remote refs along with ...
rebase Forward-port local commits to ...
reset Reset current HEAD to the spec...
rm Remove files from the working ...
show Show various types of objects
status Show the working tree status

tag Create, list, delete or verify...

Understanding Git

Unlike other VCSs that typically think about
data as changes, Git thinks of changes as

snapshots

O Snapshot of a mini filesystem

O To be efficient, if a file hasn't changed, then Git links
to the previous identical file it has already stored

Integrity

Everything in Git is check-summed before it is
stored and then referred to by that checksum.

O Impossible to change contents of file or directory
without Git knowing about it

O Can't lose information in transit or get file corruption
without Git knowing about it

Checksumming via SHA-1 hash

O 40-character string composed of hexadecimal
characters (0-9 and a-f)

Three States

Three main states that a file can reside In:

1. Committed
O Data safely stored in local database
2. Modified

O Changed a file but not yet committed it to database

3. Staged

O Marked file in current version to go into next commit
shapshot

Three Main Sections

1. Git Directory (repository)

O Where Git stores metadata and object database for
the project.

O What is copied when you clone a repository.
2. Working Directory

O Single checkout of one version of the project.
3. Staging Area

O A file that stores information about what will go into
your next commit.

O Also referred to as the index.

Three Main Sections (Picture)

Local Operations

) () (9

o
—
—

How to's

Next, we'll take a look at doing a ton of different
stuff in Git.

e (Re)moving files

e [nstall/Set e |ogging

up/Help e Undoing Changes
e Creating a repo e \Working w/remote
e Cloning a repo e Tagging
e Status of files e Branching
e Adding files e Merging
e Committing files e Rebasing
e Staged Files e Git on the Server
e Ignoring Files e And more...

How to: Install Git (I)

Git is available on Linux, OSX, and Windows

Install from Source:

e http://git-scmm.com/download
o Follow instructions (compile and install)

On Linux via package managers:
e (yumlapt-get) install git-core

How to: Install Git (ll)

On Mac:

e via Graphical Installer:
O http://code.google.com/p/git-osx-installer
e via MacPorts:

O sudo port install git-core +svn +doc
+bash_completion +gitweb

Windows:
e Vvia msysgit
O http://code.google.com/p/msysgit

How to: Setting up Git

Modify configuration file:

® ~/.gitconfig OR .gitconfig in $HOME on Windows
|dentity:

e (it config --global user.name "David Parker"

e (it config --global user.email
davidwparker@gmail.com

Editor:
e (it config --global core.editor emacs
Check Settings

e (it config --list

How to: Getting Help

Any of the following commands work:
e git help <verb>

e (it <verb> --help

e man git-<verb>

engr2-2-200-163-dhcp:git dparker$ git help branch

GIT-BRANCH(1) Git Manual
NAME
git-branch - List, create, or delete branches
SYNOPSIS
git branch [--color[=<when>] | --no-color] [-r | -al
[-v [-—abbrev=<length> | --no-abbrev]]
[(--merged | --no-merged | --contains) [<commit
git branch [--set-upstream | —--track | —-—-no-track] [-1]

[<start-point>]
git branch (-m | -M) [<oldbranch>] <newbranch>
git branch (-d | -D) [-r] <branchname>...

DESCRIPTION

How to: Create a Repository

In order to create a git repository, cd into the
directory you would like to create the repository

and type the command:
e gitinit

threadedCube:soft dparker$ cd git/

threadedCube:git dparker$ git init

Initialized empty Git repository in /Users/dparker/Desktop/soft/git/.git/
threadedCube:git dparker$ |

How to: Clone a Repository

e (it clone <url> <optional different directory>
e (it clone https://github.

com/davidwparker/opengl-3defense.qgit

<optional different directory>

o This will clone a git repository into your working
directory in directory opengl-3defense

o Or add a different directory by adding the directory

name after the <url>
threadedCube:git dparker$ git clone https://github.com/davidwparker/opengl-3def
ense.git
Cloning into opengl-3defense...
remote: Counting objects: 203, done.
remote: Compressing objects: 100% (79/79), done.
remote: Total 203 (delta 121), reused 203 (delta 121)

Receiving objects: 100% (203/203), 6.22 MiB | 1.37 MiB/s, done.
Resolving deltas: 100% (121/121), done.

How to: Checking the Status of Files

You can check the status of files in your Git
repository very easily:
e (it status

threadedCube:git dparker$ touch README
threadedCube:git dparker$ git status

On branch master

#

Initial commit

#

Untracked files:

(use "git add <file>..." to include in what will be committed)
#

README

Lifecycle (status) of Files

File Status Lifecycle

& - - &

How to: Adding Files

Add a file easily:
e it add <filename> OR git add *.<type>

threadédCube:git dparker$ git add README
threadedCube:git dparker$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
#

new file: README

How to: Commit New Files

Easily commit new files:

e git commit
o Launches editor of choice for git commit message

Alternatively:
e git commit -m 'inline commit message'

threadedCube:git dparker$ git commit -m 'added README with TEST text’
[master c356578] added README with TEST text
1 files changed, 1 insertions(+), @ deletions(-)

How to: Staged Files

A staged file is a file that has previously been

committed and has since been changed.

engr2-2-200-163-dhcp:git dparker$ git status

On branch master

Changed but not updated:

7 (use "git add <file>..." to update what will be committed)

2 (use "git checkout —- <file>..." to discard changes in working directory)
i

2

modified: README
i
no changes added to commit (use "git add" and/or "git commit -a")
engr2-2-200-163-dhcp:git dparker$ git add README
engr2-2-200-163-dhcp:git dparker$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
7
it modified: README

How to: Commit Staged Files

Committing staged files is the same as
committing new files:
e git commit

o Launches editor of choice for git commit message
Alternatively:
e git commit -m 'inline commit message'’

engr2-2-200-163-dhcp:git dparker$ git commit -m 'changed README'
[master eea®97b] changed README
1 files changed, 1 insertions(+), 1 deletions(-)

How to: Ignore Files (l)

You can ignore files and filetypes with .gitignore

e touch .gitignore
e emacs .gitignore

KA

e will ignore temporary files that are marked
with a ~, which is common with editors such
as Emacs.

e You can also add directories

How to: Ignore Files (ll)

The rules for the patterns of what can be in the

.gitignore file:

e Blank lines or lines starting with # are
ignored

e Standard glob patterns work
e You can end patterns with a forward slash (/)

to specify a directory
e You can negate a pattern by starting with an

exclamation point (!)

How to: Diff (unstaged changes)

git diff is used for multiple reasons, but the
most common is to see what has changed but
not yet staged.

o git diff

engr2-2-200-163-dhcp:git dparker$ git diff
diff -—git a/README b/README
index 8645caf..6c31666 100644
—-—— a/README

+++ b/README

@@ =1 +1r3 @@

~TEST?2

\ No newline at end of file
+TEST?2

+

+Another change

\ No newline at end of file

How to: Diff (staged changes)

If you've added files to staging, and you'd like
to see what the diff of those changes, simply
use the following:

e (it diff --staged

engr2-2-200-163-dhcp:git dparker$ git add README
engr2-2-200-163-dhcp:git dparker$ git diff --staged
diff --git a/README b/README

index 8645caf..6c31666 100644

——— a/README

+++ b/README

@@ -1 +1,3 @@

-TEST2

\ No newline at end of file

+TEST?2

.+.

+Another change

\ No newline at end of file

How to: Remove Files

e Qit rm <file>
engr2-2-200-163-dhcp:git dparker$ git rm test
rm 'test’
engr2-2-200-163-dhcp:git dparker$ git status
On branch master

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

#
#
deleted: test
#

Now the removal of the file is ready to be
committed.

Note the file is removed from the file system as
well (it can be kept with the --cached flag)

How to: Move Files

Git technically doesn't keep track of file
movement, but does offer a way to move files.

e git mv <file> <newfile>

engr2-2-200-163-dhcp:git dparker$ git mv mvfile mvfile2
engr2-2-200-163-dhcp:git dparker$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)
#

renamed: mvifile —> mvfile2

#

This is the same as running the commands: git
rm --cached orig; mv orig new; git add new

How to: Log ()

By default, git log lists commits in a repository
In reverse chronological order.

It lists commit with SHA-1 checksum, author's
name and emaill, date written, and commit
message.

See the next slide for an example.

How to: Log (ll)

e Qitlog
commit eea®97b65d19df53d58a165663b507d2bd72deea

Author: David Parker <davidwparker@gmail.com>
Date: Wed Mar 7 11:12:58 2012 -0700

changed README
commit c3565782ab2c2ee932cad48d4655f1fb9993a810e
Author: David Parker <davidwparker@gmail.com>
Date: Tue Mar 6 18:48:45 2012 -0700

added README with TEST text
commit d7cblee7997dca®98ddb94973a4dbcec943ac7fa
Author: David Parker <davidwparker@gmail.com>

Date: Tue Mar 6 18:47:11 2012 -0700

initial commit

How to: Log (lll) - Options

--pretty=format:"YOUR FORMAT"

o Very powerful way to specify own log output format
-p => shows diff introduced in each commit
-# => shows only the last # commits.

--oneline => shows commits one one line
engr2-2-200-163-dhcp:git dparker$ git log —--oneline
ee6@b36 mvfile added
cf89c5b removed test
d9f2fd@ test file
fOfcc7t 3
4142042 added gitignore
eea®97b changed README
c356578 added README with TEST text
d7cblee initial commit

many, many more!

How to: Undoing Changes

Changing last commit:
e git commit --amend

Unstaging a staged file:
e (it reset HEAD <filename>

Unmodify a modified file:

e (it checkout -- <filename>
o Warning: this overwrites the file, so you will lose any
changes that you made. You sparingly.

How to: Working with Remote ()

Remote repositories are versions of the project
on the Internet or network.

If this is a locally created git repository, then
you won't see any git remotes:

e (it remote
engr2-2-200-163-dhcp:git dparker$ git remote
If it isn't local, you will see origin:

engr2-2-200-163-dhcp:opengl-3defense dparker$ git remote
origin

How to: Working with Remote (ll)

You can also see the URL git has stored:
e (it remote -v
engr2-2-200-163-dhcp:opengl-3defense dparker$ git remote -v

origin git://github.com/davidwparker/opengl-3defense.git (fetch)
origin git://github.com/davidwparker/opengl-3defense.git (push)

How to: Adding Remote

You can easily add a remote repository as well:

e (it remote add <shortname> <url>
e (it remote add origin git@github.com:
davidwparker/git.git

engr2-2-200-163-dhcp:git dparker$ git remote

engr2-2-200-163-dhcp:git dparker$ git remote add origin git@github.com:davidwpa
rker/git.git

engr2-2-200-163-dhcp:git dparker$ git remote

origin

engr2-2-200-163-dhcp:git dparker$ git remote -v

origin git@github.com:davidwparker/git.git (fetch)

origin git@github.com:davidwparker/git.git (push)

How to: Push Remote

Pushing to remote allows us to push our
repository to the remote repository:

e (it push <remote name> <branch name>
e (it push origin master

engr2-2-200-163-dhcp:git dparker$ git push origin master
Counting objects: 22, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (14/14), done.
Writing objects: 100% (22/22), 1.82 KiB, done.
Total 22 (delta 4), reused @ (delta 0)
To git@github.com:davidwparker/git.git
* [new branch] master —-> master

Pushing will be rejected if someone else has
since pushed upstream

How to: Fetch Remote (I)

Fetching from a remote will pull down data you
don't have yet.

It pulls the data into your local repository, but it
doesn't automatically merge it with any of your
work, or modify what you're currently working
on.

How to: Fetch Remote (ll)

e (it fetch origin

engr2-2-200-163-dhcp:git dparker$ git fetch origin
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 3 (delta 1), reused @ (delta 0)
Unpacking objects: 100% (3/3), done.
From github.com:davidwparker/git

cb78df7..873c@2c master -> origin/master

In this example, | made changes on github.com
and then fetched them into my repository.

How to: Changing Remotes

You can easily rename a remote
e (it remote rename <old> <new>

engF2—2—28®—163—dhcp:git dparker$ git remote rename origin origin2
engr2-2-200-163-dhcp:git dparker$ git remote

origin2

Or remove a remote

e (it remote rm <name>

How to: Tagging

Tagging allows Git to forever remember a
snapshot of a repository.

There are two types of tags in Git:

e Lightweight: a pointer to a specific commit
e Annotated: full objects in the Git database

It is recommended to use annotated tags.

How to: Creating an Annotated Tag

Annotated tagging is extremely easy:
e (it tag -a <tagname> -m 'a message'

engr2-2-200-163-dhcp:git dparker$ git tag -a v@.1 -m 'tagged’
engr2-2-200-163-dhcp:git dparker$ git tag
vd.1l

As you can see, you can also list tags with the
command:

e (it tag

How to: Creating a Signed Tag

Signed tagging is extremely easy:

e (it tag -s <tagname> -m 'a message'
This uses GPG (GNU Privacy Guard)
The GPG signature can be seen using:
e (it show <tagname>

You can verify a signed tag as long as you
have the signer's public key:

e (it tag -v <tagname>

How to: Creating an Lightweight Tag

Lightweight tagging is extremely easy:
e (it tag <tagname>

engr2-2-200-163-dhcp:git dparker$ git tag v@0.2
engr2-2-200-163-dhcp:git dparker$ git tag

vo.1l

vo.2

This will create a lightweight tag. Lightweight
tags cannot use the -a, -s, or -m flags.

How to: Tagging later

If you forgot to tag, you can check your
commits with:

e (it log --pretty=oneline

And then tag using the checksum:
e (it tag -a <tagname> <checksum>

engr2-2-200-163-dhcp:git dparker$ git tag —a v0.001 41430424

engr2-2-200-163-dhcp:git dparker$ git tag
v.001

vo.1l

vod.?2

How to: Pushing Tags

Tags aren't pushed when doing a push, you
need to specify them

e (it push origin <tagname>
e (it push origin --tags
Use the latter to push all tags

engr2-2-200-163-dhcp:git dparker$ git push origin —--tags
Counting objects: 2, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (2/2), done.
Writing objects: 100% (2/2), 288 bytes, done.
Total 2 (delta @), reused @ (delta 0)
To git@github.com:davidwparker/git.git
*x [new tag] v0.001 —> v0.001
* [new tag] ve.1l —> v0.1
* [new tag] vd.2 —> v0.2

How to: Branching

One of Git's most powerful features is its
branches.

Git's branches are incredibly lightweight, and it
IS nearly instantaneous to switch back and forth
between branches.

Git encourages a workflow that branches and
merges often, even multiple times a day.

How to: Why Branch?

A realistic workflow may be as follows:

1. Working on an app

2. Create a branch for a story you're working
on

3. Do some work

Then, you get a call for critical hotfix needed:

1. Revert back to production branch

2. Create branch for hotfix

3. Test hotfix and merge the branch, push to
production

4. Switch back to original story and continue

How to: Creating a branch

Creating a branch is incredibly easy:

e (it branch <branch name>
engr2-2-200-163-dhcp:git dparker$ git branch abranch
engr2-2-200-163-dhcp:git dparker$ git branch

abranch
* master

This creates a pointer to the same commit
you're currently on.

As you can see above, you can easily list what
branches there are, as well as see your current
branch (marked with *)

e (it branch

How to: Branching

Switching to another branch is easy as well:

e (it checkout <branch name>

en§r2—2—200—163—dhcb:§it dbarker$ git checkout abranch
Switched to branch 'abranch’

Work can then be completed on that branch:

engr2-2-200-163-dhcp:git dparker$ git status
On branch abranch
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout —- <file>..." to discard changes in working
#
modified: README
#

no changes added to commit (use "git add" and/or "git commit -a")
engr2-2-200-163-dhcp:git dparker$ git commit -a -m 'made a change'’
[abranch 5e605c3] made a change

1 files changed, 3 insertions(+), 1 deletions(-)

How to: Branching

You can also easily checkout a branch when
you create it:

e (it checkout -b <branch name>

enér2—2—2®@—163—dhcp:éit dparker$ éit checkout -b newbranch
Switched to a new branch 'newbranch'’

When you are completely done with a branch,
you can easily delete it:

e (it branch -d <branch name>

engr2-2-200-163-dhcp:git dparker$ git branch -d newbranch
Deleted branch newbranch (was 80806f4).

How to: Merging (l)

If you don't edit a branch, and then merge
another branch where you have changed
things, then Git performs a fast forward.

e (it merge <branch name>

engr2-2-200-163-dhcp:git dparker$ git merge testbranch
Updating 72860b4..ea3ede9
Fast-forward

README | 2 +-
1 files changed, 1 insertions(+), 1 deletions(-)

How to: Merging (ll)

If you do edit a branch, and then merge another
branch where you also have made edits, then
Git performs a three-way merge: the common
ancestor snapshot, the merged branch, and the
merging branch.

e (it merge <branch name>

engr2-2-200-163-dhcp:git dparker$ git merge testbranch
Merge made by recursive.

mvfile2 | 1 +

1 files changed, 1 insertions(+), @ deletions(-)

How to: Merging Conflicts (I)

If you edit a branch, and attempt to merge
another branch where you have edited the
same part of the same file, you may end up
with a conflict.

e (it merge abranch

engr2-2-200-163-dhcp:git dparker$ git merge abranch
Auto—-merging README

CONFLICT (content): Merge conflict in README
Automatic merge faliled; fix conflicts and then commit the result.

How to: Merging Conflicts (ll)

You can see what has changes with git status
engr2-2-200-163-dhcp:git dparker$ git status
On branch master

Unmerged paths:
(use "git add/rm <file>..." as appropriate to

both modified: README

Open tnis Tlle In your editor and you can see
where the conflict is:

S - Changes made in HEAD are
el above ======= and changes
made in branch are below.

HHH R

Made via branch
>>>>>>> abranch

How to: Merging Conflicts (lll)

After you change the file as you like, remove
thing <KL L, =======_gnd >>>>>>> [|nes,

then you can add the file normally with git add.

engr2-2-200-163-dhcp:git dparker$ git add README
engr2-2-200-163-dhcp:git dparker$ git status

On branch master

Changes to be committed:

modified: README

H B ®

How to: Branching (log)

Now that we have merged, if we do a log, we
can actually see the branches (in ASCII, on the
left):

e (it log --pretty=oneline --graph

engr2-2-200-163-dhcp:git dparker$ git log —-pretty=oneline —--graph
X 72860b452a18491a84bbb101b0930f5fleac256b README

I\

| * 5e605c3cc54c230c871Tb7dc82557718aa8c31d65 made a change

*x | 808061T443631529a813de3495dbf1866e@f358f5 changed from master

|/

How to: Branching tips

You can easily see what branches you have
already merged with your current branch:
e (it branch --merged
engr2-2-200-163-dhcp:git dparker$ git branch --merged
abranch

* master
testbranch

Or not merged:
e (it branch --no-merged

lengr2-2-200-163-dhcp:git dparker$ git branch --no-merged
notmerged

How to: Remote branches

Remote branches work similarly to local
branches, except that they take the form
<origin>/<branch>.

In general, you must remember to "git fetch"
from remote to get the latest.

From there, you don't get that work in your
working directory, but you can merge it with "git
merge origin/<new branch>"

And you must "git push” to push the latest to
the remote repository.

How to: Rebasing (l)

Rebasing is another tool that allows you to
Integrate changes from one branch to another.

Rebasing allows you to take all the changes
that were committed on one branch and replay

them on another branch.
engr2-2-200-163-dhcp:git dparker$ git checkout rebased
Switched to branch 'rebased’
engr2-2-200-163-dhcp:git dparker$ git rebase master
First, rewinding head to replay your work on top of 1it...
Applying: added rebased file

In this example, | made changes on both
rebased and master, then replayed the master

changes on rebased.

How to: Rebasing (ll)

At this point, you can go back to master and
fast forward.

engr2-2-200-163-dhcp:git dparker$ git merge rebased
Updating c9d@93f..7eb959%e
Fast-forward

@ files changed, @ insertions(+), @ deletions(-)
create mode 100644 rebased

The most often usecase for rebase is to make

sure your commits apply cleanly to a remote
branch.

Rebasing is great for cleaning up when you
have made a ton of 'unnecessary' commits.

How to: Rebasing (lll)

If you follow the previous workflow, you'll be ok.

Otherwise, a warning: do not rebase commits
that you have pushed to a public repository.

When you rebase, you're abandoning existing
commits and creating new ones that are similar
but different.

Only rebase commits that you haven't push
publicly.

How to: Git on the Server (l)

So far, everything has been related to using Git
on the client. However, in order to work with
others, then someone is going to need to set up
a server.

You can push/pull from individual repos, but
that's typically frowned upon, as it may confuse
who has what files.

Personal note: | didn't set up a personal server,

but choose to use the excellent web app
GitHub

How to: Git Server Protocols (l)

To run a Git server, all you need is to choose
protocols you want your server to communicate
with:

e Local

SSH

Git

HTTP(S)

How to: Git Server Protocols (ll)

Local
e (it clone /opt/git/project.qgit

e Pros
O Useful with shared filesystem
O Quick to grab others' work
e Cons
O May be harder than just sharing over network

How to: Git Server Protocols (lll)

SSH
e (it clone ssh://user@server:project.git

e Pros
o Generally already set up (or easy to set up)
o Authenticated network protocol

o Used for writes anyway
o Efficient

e Cons
o Can't serve anonymous access to the repositories

How to: Git Server Protocols (V)

Git
e (it clone git://user@server:project.qgit

e Pros
o Fastest protocol available

e Cons
o Read only
o Lacks authentication

How to: Git Server Protocols (V)

HTTP(S)
e (it clone http://user@server:project.qgit

e Pros

o Easy to set up
o Commonly used protocols (so corporate firewalls are
still generally okay)

e Cons

o Read only
o Inefficient for the client

How to: Setting up the Git Server

Get a bare repository
e (it clone --bare my_project my_project.git

A bare repository is a repository without a
working directory

Put the bare repository on the server

® Scp -r my_project.git user@git.example.com:
lopt/git

Puts my_project under /opt/qgit

Now just set up your protocols

How to: More on the Protocols

At this point you would set up SSH, git, or
another protocol.

Setting up the protocols exactly is beyond the

nature of this presentation, but know it's not too
difficult to set up.

How to: All the Rest (l)

Git's capabilities seem to go on and on. At this
point, I'm going to name drop a few of the other
things that Git can do, but without going into
much detail (I have too many slides already)

e Revision Selection
o Git allows you to specify specific commits or a range
of commits in several ways

e Interactive Staging
o Command line scripts to make some issues with
staging easier.

How to: All the Rest (ll)

e Stashing

O Used when you need to do work on another branch

suddenly, but your current work is half-completed
and you don't want to commit it yet.

e Rewriting History

O Useful for when you need to rewrite a commit so that
it looks a certain way

e Debugging

O Git uses bisect (binary search) to help determine
where code may have become bad

How to: All the Rest (lll)

e Submodules
O Great for using a project within a project

e Git Hooks

O Program the system to automatically do something
after you perform a commit, or another git action.

O Used on client or server

e Much, much more.

Git Internals ()

When you create a Git repository, Git creates a
.git folder, which is where almost everything Git
stores and manipulates is located.

Inside the .git folder, there are four core parts:

e HEAD file

e index file

e oObjects directory
e refs directory

Git Internals (ll)

Two data structures:

® mutable index that caches information about the
working directory and the next revision to be committed

® immutable, append-only object database

Object database objects:

® blob = content of file
tree = directory

®
® commit = links trees together
o

tag = container that contains reference to another object
and can hold metadata

Git Internals (lll)

Index connects object database and working
tree

Each object is identified by a SHA-1 hash of its
contents

Objects are stored in entirety using zlib
compression

Git Objects (l)

At its core, Git is a key-value object store.

You can insert any kind of content into it, and it
will give you a key to access that content at any
time. All Git objects are stored as blobs.

e echo 'test' | git hash-object -w --stdin
o hash-object stores data in the .git directory.

o -w says to store the object
o --stdin tells command to read from stdin, otherwise it

expects a file

lengr2-2-200-163-dhcp:git dparker$ echo ‘test' | git hash-object -w —-stdin
Odaeatb9864cf43055ae93bebBafdbc7d1l44bfa4d

Git Objects (ll)

You can view the objects at any time with:
e find .git/objects -type f

engr2-2-200-163-dhcp:git dparker$ find .git/objects —-type f
.git/objects/0e/3bebc3dc5311323aee2d52c592af78cl4ebfbd
.git/objects/16/6bcebad418369dae386b26b72ac782e978a79f
.git/objects/1la/8e8750499396acfcfebb50e2c92ad89fbae954
.git/objects/3b/12464976a57fd%9e@7d67dd7d5¢cf4f0110188410
.git/objects/41/4a0424fdfaaff@7961b9b602b1d57076T 2709

Git Objects (lll)

You can view the content of the Git objects:
e (it cat-file -p <SHA-1>

engr2-2-200-163-dhcp:git dparker$ git cat-file -p fce51d72485d3239e101cbe3dadlb
d2dd8fd0962

100644 blob e000c20a28b6245017434f5b7babad44418e7681 .gitignore
100644 blob 1a8e8750499396acfcfebb50e2c92ad89fbae954 README
100644 blob 6320cd248dd8aeaab759d5871f8781b5c08505172 mvfile2

engr2-2-200-163-dhcp:git dparker$ git cat-file —-p @e3bebc3dc5311323aee2d52c¢592a
f78cl4ebfbd

TEST2

Another change
<<<<<<< HEAD

What???

Made via branch
>>>>>>> agbranch

Tree Objects ()

Tree objects solve the problem of storing the
flename and also allows you to store a group
of files together.

e (it cat-file -p master®{tree}

engr2-2-200-163-dhcp:git dparker$ git cat-file -p master~{tree}
100644 blob e000c20a28b62450Ff7434Ff5b7babad444t8e7681 .gitignore
100644 blob 5281523574a3bb59785c5d318223132eea3da7do README
100644 blob 6320cd248dd8aeaab759d5871f8781b5c0@505172 mvfile2
100644 blob e69de29bb2d1d6434b8b2%ae775ad8c2e48c5391 rebased

master®{tree} specifies tree object pointed to by
last commit on the master branch.

Tree Objects (ll)

Conceptually, Git stores something like this:

tree

yd l N
README Rakefile lib
» \ a
blob blob tree

|
simplegit.rb

v

blob

Commit Objects ()

Commit objects store who saved snapshots,
when they were saved, and/or why they were

saved.
On a commit object, you can run the command:
e (it cat-file -p <SHA-1>
engr2-2-200-163-dhcp:git dparker$ git cat-file -p f@fcc7f7fc93c468cH
tree a669b3a898a9f436a0530422f0e0@bd57cf7ab69d
parent 414a0424fdfaaff@7961b9b602b1d57076T 12709

author David Parker <davidwparker@gmaill.com> 1331144956 -0700
committer David Parker <davidwparker@gmail.com> 1331144956 -0700

3

Commit Objects (ll)

You can also run git log on a SHA-1 of a
commit object to see the real Git history:

engr2-2-200-163-dhcp:git dparker$ git log —-stat f@fcc7f7fc93c468c6
commit f@fcc7f7fc93c468c6a8c8dldeef5946880ccddc

Author: David Parker <davidwparker@gmail.com>

Date: Wed Mar 7 11:29:16 2012 -0700

3

README | 4 +++-
1 files changed, 3 insertions(+), 1 deletions(-)

commit 414a0424fdfaaff@7961b9b602b1d57076T 12709
Author: David Parker <davidwparker@gmail.com>
Date: Wed Mar 7 11:22:11 2012 -0700

added gitignore

.gitignore | 2 ++
1 files changed, 2 insertions(+), @ deletions(-)

Git References

You can find the files that contain the SHA-1
values in the .qgit/refs directory.

If you are constantly referencing a specific file
by its SHA-1, then refs helps you to remember
those more easily.

Rather than: git log 1a40ae3...

You can do
e (it update-ref refs/head/master 1a40ae3...

Then you get: git log master

The HEAD file

The HEAD file is a symbolic reference to the
branch you're currently on.

Unlike a normal reference, it doesn't contain a
SHA-1 value, but a pointer to another pointer

When you run a git commit, it creates a commit
object, specifying the parent of that object to be
whatever SHA-1 value the reference in HEAD
points to. Read and write with the commands:

e it symbolic-ref HEAD
e git symbolic-ref HEAD refs/heads/different

Tag Objects

A tag object is like a commit object, except it
points to a commit rather than a tree.

It's like a branch reference, but it never moves
forward - it always points to same commit.

That's all a lightweight tag is (to be discussed
later) - a branch that never moves

With an annotated tag, Git creates a tag object
and then writes a reference to point to it rather
than the commit directly.

Packfiles (I)

Git has the ability to only store files and their
respective deltas, which is great when big files
get modified so you don't store the file twice.

e it gc | find .git/objects -type f

engr2-2-200-163-dhcp:git dparker$ git gc

Counting objects: 56, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (43/43), done.

Writing objects: 100% (56/56), done.

Total 56 (delta 16), reused @ (delta 9)

engr2-2-200-163-dhcp:git dparker$

engr2-2-200-163-dhcp:git dparker$ find .git/objects -type f
.git/objects/0e/3bebc3dc5311323aee2d52c592af78cl4ebfbd
.git/objects/9d/aeatbh9864cf43055ae93beb@aftdbc7d144bfad
.git/objects/info/packs
.git/objects/pack/pack-50781399126266151d476fd14bc@d3f7ba36625a. 1dx
.git/objects/pack/pack-50781399126266151d476fd14bc@d3f7ba36625a.pack

Packfiles (ll)

As you can see, a majority of the Git objects
are gone, and now we have a .pack file.

Use verify-pack to see what was packed up:
e (it verify-pack -v .git/objects/pack/<pack.idx>

e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
ea3ede9f9a30e554a60187c849211d5¢c584e3b61
eeb60b36c1b6903caele22c3TT3e2028563c25ed4
eeal97b65d19df53d58a165663b507d2bd72deea
fOfcc7f7fc93c468c6a8c8dldeef5946880ccddc
36410cb39%9af47cabf3lae
fce51d72485d3239e101cbe3dad4d1bd2dd81d0962
6b26b72ac782e978a79f

non delta: 40 objects

chain length 1: 13 objects

chain length 2: 2 objects

chain length 3: 1 object

blob @ 9 3572

commit 231 153 1047

commit 235 156 1900

commit 237 162 2608

commit 73 83 2367 1 cf89c5bd6e31ced489ch

tree 5 15 3700 2 166bce6ad418369dae38

Other Useful Related Tools (l)

User Interface Tools:

e (Qgit: http://sourceforge.net/projects/qqgit/
e Tig: http://jonas.nitro.dk/tig/

Tool Shipped with Git:

e gitk: Original TCL/TK GUI for browsing Git
repos history

e Git-gui: Simple TK based graphical interface
for common Git Operations

e gitweb: Full-fledged web interface for Git
repositories

Other Useful Related Tools (ll)

Version Control Interface Layers:

e StGit: http://www.procode.org/stgit/
e Cogito: http://git.or.cz/coqito/

Public Hosting:

e repo.or.cz: http://repo.or.cz/
e GitHub: https://github.com/
e Gitorious: http://gitorious.org/

What projects use Git?

e Linux Kernel e |Query

e Ruby on Rails e Perld

e Android e Debian

e Drupal o VLC

o \WINE e Rubinius

e X.org e PostgreSQL
e Eclipse e Puppet

o GCC e phpMyAdmin
e KDE e GNU Scientific
o Qt Library (GSL)
e GNOME e Many more...

More Open Source VCSs and DVCSs

VCSs DVCSs
e Subversion e Bazaar
e Concurrent e Mercurial
Versions System e Darcs
(CVS) e Fossil
e OpenCVS e GNU arch
e Aegis
e Many more...

References

http://git.or.cz/index.html

http://git-scm.com/

http://progit.org/book/

http://gitref.org/

http://gitready.com/

http://whygitisbetterthanx.com/
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/List_of revision_control software
http://en.wikipedia.org/wiki/Comparison_of revision_control_software
https://git.wiki.kernel.org/articles/g/i/t/GitLinks _efb4.html
https://git.wiki.kernel.org/articles/g/i/t/GitProjects8074.html
http://hoth.entp.com/output/git for designers.html
http://eagain.net/articles/qgit-for-computer-scientists/
http://schacon.github.com/git/everyday.html

