
Introduction to OSGi 

University of Colorado, Boulder 
CSCI 5828 Foundations of Software Engineering 
Spring 2012 – Professor Kenneth Anderson 

Presentation by: 
Brendan Greene 

Software Developer 
Northrop Grumman Corporation 



Introduction to OSGi 

My background 
•  Software developer for the last 3.5 years in the 

defense industry. 
•  Spent 2.5 years overseas in the Marshall Islands 

developing missile defense software. 
•  Currently doing agile development using multiple Java 

open source frameworks such as Hibernate, Spring, 
Camel and OSGi. 

•  Studied at the University of California, Irvine. 
•  Bachelor of Science in Computer Science. 
•  Bachelor of Science in Biological Sciences. 



Introduction to OSGi 

What is OSGi? 
 A brief explanation of OSGi’s history. 

Why OSGi? 
 Java’s modularity shortcomings. 
 How does OSGi address this? 

Exploring OSGi’s Layers   
 Module Layer, Lifecycle Layer, Service Layer 

OSGi in the Real World 
Summary 
References 
 



Introduction to OSGi 
What is OSGi? 

•  First appeared in 1999. 
•  Once called the Open Services Gateway Initiative, the 

OSGi Alliance now refers to the framework 
specification as OSGi or the OSGi Service Platform. 

•  Originally intended to bring Java into embedded 
systems. 

•  OSGi is a modularity layer for the Java platform. 
•  In this context we’re referring to the traditional 

computer science definition of modularity: 
•  The logical decomposition of a large system into smaller 

collaborating pieces. 

•  OSGi provides a service oriented development model 
allowing for SoA within a virtual machine. 

 



Introduction to OSGi 
Why OSGi? 

Java’s modularity shortcomings: 
•  Provides encapsulation through access modifiers: 

•  public, protected, private 
•  Java also provides the package 

•  Shortcoming:  In order for classes or methods 
from one package to be available to another they 
must be declared as public.   

•  Problematic when package A needs code from 
package C, now packages B, D, E and F can see 
that code. 

•  OSGi provides package level encapsulation. 

 



Introduction to OSGi 
Why OSGi? 

Java’s modularity shortcomings: 
•  The Java class path. 
•  Does not provide a dynamic way to handle 

versioning and dependencies. 
•  Often create applications and add JARs until the 

“great JVM” is appeased. 
•  OSGi offers an elegant solution to handling 

dependencies by requiring dependency 
declarations within units of modularity. 

 



Introduction to OSGi 
Why OSGi? 

Java’s modularity shortcomings: 
•  Large Java applications can be difficult to deploy 

and manage. 
•  Example of this would be a monolithic JEE 

application. 
•  In order to update a deployment the system/

servers need to be cycled and the application 
built and deployed causing system outages. 

•  OSGi provides an isolated module cycling/
updating capability in order to increase availability. 

 



Introduction to OSGi 
Exploring OSGi 

OSGi’s Layered Architecture: 
 
 
 
 
 
 
 
 
 

Source: OSGi Alliance Website. <
http://www.osgi.org/About/WhatIsOSGi> 



Introduction to OSGi 
Exploring OSGi 

Focus is on the following OSGi Layers 
•  Module Layer 
•  The Bundle 
•  Package Level Encapsulation 

•  Lifecycle Layer 
•  The Container 
•  Managing an OSGi application 

•  Service Layer 
•  The nervous system 
•  How OSGi bundles communicate 



Introduction to OSGi 
Exploring OSGi: Module Layer 

Modularity: 
•  OSGi module definition is the bundle, also known 

as OSGi’s unit of modularity and deployment. 
•  Standard Java provides monolithic deployment units such as 

JAR, WAR and EAR. 

•  Modules promote code reuse. 
•  Modules promote high cohesion. 
•  Modules enforce logical boundaries for code 

location. 
•  Similar concept to object-orientation in that they 

both provide separation of concerns. 



Introduction to OSGi 
Exploring OSGi: Module Layer 

OSGi’s core component is the Bundle  
•  Structurally similar to a JAR with additional 

metadata. 
•  A JAR and Bundle differ in that a Bundle is not a 

fully featured application packaged up, but rather a 
set of highly cohesive classes. 

•  A Bundle can contain: 
•  Any text or configuration files found in a typical JAR 
•  A MANIFEST.MF file located in the META-INF directory 
•  Embedded JAR files that can be used by just the bundle by 

explicitly placing them on the Bundle-Classpath header in the 
MANIFEST.MF 



Bundle Configuration 
•  Configuration is facilitated through the 

MANIFEST.MF file. 
•  OSGi specification defines a large set of headers 

for bundle configuration (this set is still growing) 
 

Introduction to OSGi 
Exploring OSGi: Module Layer 



Introduction to OSGi 
Exploring OSGi: Module Layer 

OSGi Bundle and package level encapsulation: 
•  Can manage package exporting and importing 

through headers in the bundle MANIFEST.MF 
•  Headers used: 
•  Export-Package 

•  Declare which packages are visible to other bundles in 
essence adding an additional access modifier to Java 

•  Import-Package 
•  Declare which “exported-package(s)” the bundle depends on 

for functionality. 

•  Require-Bundle 
•  Include an entire Bundle as a dependency (legacy). 



Introduction to OSGi 
Exploring OSGi: Module Layer 

OSGi Bundle and package level encapsulation: 
•  Bundle dependencies are not transitive. 

•  If A imports B and B imports C,  A does not have access to 
code in C. 

•  Bundles importing a package do not have access 
to nested packages. 
•  Bundles must explicitly declare a dependency on a package, 

and that package must be explicitly exported. 

•  Additionally, you can use modifiers to restrict 
which classes within a package are exposed 
when exporting. 



Introduction to OSGi: 
Exploring OSGi: Lifecycle Layer 

Lifecycle Layer 
•  Provides the ability to dynamically install and 

manage bundles in the OSGi framework. 
•  The OSGi specification defines the following lifecycle 

operations: install, update, start, stop and uninstall. 

•  Provides the interaction between bundles by 
allowing for bundles to register with the 
framework and gain access to the execution 
environment. 

•  Provides flexibility to architect a system with the 
knowledge that components can be updated, 
removed or plugged-in without experiencing a 
system outage. 



Introduction to OSGi: 
Exploring OSGi: Lifecycle Layer 

OSGi containers implement the lifecyle specification 
•  Three popular open source containers are Eclipse 

Equinox, Apache Felix and Knoplerfish 
•  Eclipse Equinox: http://www.eclipse.org/equinox/ 
•  Apache Felix: http://felix.apache.org/site/index.html 
•  Knoplerfish: http://www.knoplerfish.org/ 

•  Eclipse Equinox is the run-time for the popular 
Eclipse IDE and is the reason the IDE is able to 
implement a plug-in model (plug-in = bundle) 

•  Containers provide command line and web based 
interfaces for administration of the container 



Introduction to OSGi: 
Exploring OSGi: Lifecycle Layer 

Installing Bundles 
•  Bundle installed 
•  Bundle dependencies are 

resolved (remain in installed 
state if missing dependencies) 

•  Bundle can be refreshed 
•  Bundle uninstalled 



Introduction to OSGi: 
Exploring OSGi: Lifecycle Layer 

Starting Bundles 
•  Once a bundle has resolved its 

dependencies it is ready to start. 
•  A Bundle will be “activated” and 

transition to an active state. 
•  Important to know for 

troubleshooting. 
•  An installed bundle cannot 

become active if it depends on 
another bundle that cannot 
resolve. 



Introduction to OSGi: 
Exploring OSGi: Lifecycle Layer 

OSGi Classloading 
•  A key to OSGi having such a dynamic runtime. 
•  No more monolithic classloader. 
•  Each bundle has its own classloader. 
•  Bundle classloader first scans its embedded 

packages and then loads any package imports. 

•  If a Bundle can’t resolve, the system can still 
start and function while troubleshooting 
the module occurs. 

 
 



Introduction to OSGi: 
Exploring OSGi: Service Layer 

OSGi Services and the Service Registry 
•  OSGi services enable a single-JVM Service 

Oriented Architecture 
•  OSGi services follow a publish, find and bind 

paradigm. 
•  Services are published to the service registry. 
•  Clients search the registry for needed/available 

services depending on the need. 

•  Promotes interface driven development 
•  A similar concept to Dependency Injection 



Introduction to OSGi: 
Exploring OSGi: Service Layer 

What exactly is a service? 
•  A service embodies a contract between a 

provider and a caller. 
•  The caller doesn’t need to know anything about 

the implementation of the service, or even where 
it is implemented. 

•  Development of services focuses on deciding 
what other components can do the work needed. 

•  Promotes loose coupling and code reuse. 
•  In OSGi a service can be an interface or a 

superclass, but the preferred methodology is to 
code to an interface. 



Introduction to OSGi: 
Exploring OSGi: Service Layer 

Role of services in OSGi 
•  Services provide a reliable way for bundles to 

communicate. 

Source: Eclipse Website <
http://www.eclipse.org/> 



Introduction to OSGi: 
Exploring OSGi: Service Layer 

Publishing/Registering Services 
•  Services are implemented as POJO (Plain old java 

objects) with no dependency on the OSGi APIs. 
•  Described and published through interfaces. 
•  Services are registered by a bundle in order to 

make the API of the service available. 
•  Registration done through a simple method call. 

•  Best practice dictates that a service interface 
reside in a different package than its 
implementation.   

•  When using the Export-Package manifest header, 
only the interfaces are exposed to the container. 



Introduction to OSGi: 
Exploring OSGi: Service Layer 

Finding and Using Services 
•  OSGi provides the ServiceReferences interface 

that defines two methods:  
•  getRegisteredServices: Returns a list of services 
•  getServicesInUse: Gets services being utilized by other 

bundles 

•  Even better OSGi provides the ServiceTracker 
class. 

•  This is a dynamic class that gets and ungets 
services based on events during runtime. 



Introduction to OSGi: 
Exploring OSGi: Service Layer 

Some useful services that come with OSGi 
•  Event Admin Service 

•  This service allows you to design your application as an 
event driven application. 

•  Handled through messaging in a manner very similar to 
the Java Messaging Service (JMS).  

•  Configuration Management Service 
•  Allows for configuring a bundle that will manage config 

files and even scan other bundles for config files. 
•  Can alter configuration of the application through the 

OSGi container’s administration command line. 



Introduction to OSGi 

Future of OSGi 
•  Although it is an older framework, it is starting to 

get a lot of visibility. 
•  Parts of OSGi are being incorporated into Java 1.8 

to satisfy modularity requirements. 
•  Many open-source products are refactoring code 

in order to support OSGi. 



Introduction to OSGi: 
OSGi in the world 

OSGi is everywhere 
•  Runtime for the Eclipse IDE 
•  IBM Websphere Application Server 
•  Oracle Glassfish AS 
•  Jboss AS 
•  Spring Roo 
•  All Spring Framework Jars (are bundles) 
•  Parts of OSGi are being incorporated into Java 

1.8 as a JSR to support modularity 
 



Introduction to OSGi: 
OSGi in the world 

OSGi Roadblocks 
•  It has a terrible name. 
•  OSGi has a steep learning curve. 
•  OSGi is not yet fully compliant with JEE, 

however the Enterprise OSGi specification is 
available and several implementations exist. 

•  Difficult to migrate legacy systems to OSGi 
since a lot of effort would need to go into 
Bundling up all the system’s JARs. 



Introduction to OSGi 

Summary 
•  OSGi provides Java the fuel to get past just being 

object-oriented and embrace module granularity. 
•  OSGi promotes interface based programming as 

well as module cohesion and loose coupling 
between components. 

•  OSGi provides a dynamic container for managing 
and updating systems while reducing outages. 

•  OSGi Rocks! 



Introduction to OSGi 

Reference Material for OSGi 
•  OSGi specification website 
•  http://www.osgi.org 

•  OSGi in Action 
•  http://www.manning.com/hall/ 

•  OSGi in Depth 
•  http://www.manning.com/alves/ 

•  Tutorials 
•  http://felix.apache.org/site/apache-felix-osgi-

tutorial.html 


