
Executive Summary: Balking Design
Patterns By Drew Goldberg
Balking Patterns are used to prevent an object from executing certain code if it is an
incomplete or inappropriate state.

These Design Patterns include: The Balking Pattern, The Guarded Suspension, and The
Double-Checked Locking Pattern.

These patterns seem to have arisen when JVMs were slower and synchronization wasn't
as well understood as it is today.

These patterns have appeared become somewhat antiquated as JVMs improved, newer
design pattern(s) were introduced, and the increased use of functional programming
language's immutable/persistent data structures help reduce the complexities of
concurrency's implementation and maintenance.

Still it is nice to see what was used in the past inorder to get a better perspective of
today's concurrency techniques.

Balking - Design Patterns

Dealing with Incomplete and Incorrect States

By

Drew Goldberg

What are balking patterns?

● Balking - If an object’s method is invoked when the
object is in an inappropriate state, then the method will
return without doing anything.

Balking Design Patterns:

● Balking Design Pattern
● Guarded Suspension
● Double Checked Locking

Reference: http://www.mindspring.com/~mgrand/pattern_synopses.htm#Balking

http://www.mindspring.com/~mgrand/pattern_synopses.htm#Balking

● This software design pattern is used to invoke an action

on an object only when the object is in a particular state.

● Objects that use this pattern are generally only in a

state that is prone to balking temporarily but for an
unknown amount of time

reference: http://en.wikipedia.org/wiki/Balking_pattern

Balking Pattern: Intro

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Balking_pattern

Balking Pattern: Implementation

public class Example {
 private boolean jobInProgress = false;

 public void job() {
 synchronized(this) {
 if (jobInProgress) {
 return;
 }
 jobInProgress = true;
 }
 // Code to execute job goes here
 // ...
 }

 void jobCompleted() {
 synchronized(this) {
 jobInProgress = false;
 }
 }
}

reference: http://en.wikipedia.org/wiki/Balking_pattern

If the boolean instance variable
jobInProgress is set to false, then
the job() will return without having
executed any commands and
therefore keeping the object's
state the same.

If jobInProgress variable is set to
true, then the Example object is in
the correct state to execute
additional code in the job()

http://en.wikipedia.org/wiki/Balking_pattern

Balking Pattern and Single Threaded
Execution

Typically, a balking pattern is used with a single threaded execution pattern
to help coordinate an object's change in state.
reference: http://www.mindspring.com/~mgrand/pattern_synopses.htg

What is the Single Threaded Execution pattern?

● This design pattern describes a solution for the concurrency when multiple
readers and multiple writers access to a single resource.

● The most common problems in this situation were lost updates and
inconsistent reads.

● Essentially, Single Threaded Execution is a concurrency design pattern
that implements a form of shared mutability, which is still very easy to
screw up.

reference: Checking Java Concurrency Design Patterns Using Bandera Cleidson R. B. de Souza and
Roberto S. Silva Filho Department of Information and Computer ScienceUniversity of California, Irvine
http://wendang.baidu.com/view/df10870a581b6bd97f19eafb.html?from=related

http://www.mindspring.com/~mgrand/pattern_synopses.htm#Balking
http://wendang.baidu.com/view/df10870a581b6bd97f19eafb.html?from=related

Balking Pattern: Negatives

● It is considered an anti-pattern, so it is not a true design pattern

● Since, the balking pattern is typically used when an object's state could be
prone to balking for an indefinite period of time, then it isn't
recommended to use when an object's state is prone to balking for a
relative known amount of time.

● The Guarded Suspension pattern is a good alternative when an object's
state is prone to balking for a known finite period of time.

reference: http://en.wikipedia.org/wiki/Balking_pattern

http://en.wikipedia.org/wiki/Balking_pattern

Guarded Suspension Pattern: When
To Use It

● Both Guarded Suspension Pattern and the Balking Pattern use similar
criteria

● It manages operations that require both a lock to be acquired and a
precondition to be satisfied before the operations can be executed.

● The guarded suspension pattern is typically applied to method calls in
object-oriented programs

● It involves suspending the method call and the calling thread, until the
precondition is satisfied.

● The amount of time for the preconditioned to be satisfied is usually a
relatively known amount of time

reference: http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Precondition
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Guarded Suspension Pattern Intro:
● This design pattern uses try/catch clauses because an

InterruptedException can be thrown when the wait() is invoked.

● The wait() method is called in the try clause if the precondition isn't met

● The notify()/notifyAll() method is called to update a single/all other threads

that something has happened to the object
.
● The notify()/notifyAll() are usually used for telling the other threads that the

object's state has been changed.

reference: http://docs.oracle.

com/javase/tutorial/essential/concurrency/guardmeth.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Guarded Suspension Pattern: Bad
Code, That Can Use This Pattern

CODE THAT CAN USE THE GUARDED SUSPENSION PATTERN

public void guardedJoy() {
 // Simple loop guard. Wastes
 // processor time. Don't do this!
 while(!joy) {}
 System.out.println("Joy has been achieved!");
}

Reference http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

What's wrong with this code?

Suppose, for example
guardedJoy() is a method that
must not proceed until a shared
variable joy has been set by
another thread. Such a method
could, in theory, simply loop until
the condition is satisfied. This
can wastes a lot CPU cycles!

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Guarded Suspension Pattern:
How to Fix This Code

public synchronized guardedJoy() {
 while(!joy) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 System.out.println("Joy and efficiency have been achieved!");
}

public synchronized notifyJoy() {
 joy = true;
 notifyAll();
}

Reference: http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Instead of looping over a
variable to see if the
precondition of joy equals true
has been met, use a Guarded
Block.
The wait() invocation blocks the
thread until it receives a notified
response.
If the precondition joy then
equals, true, it can continue
executing the code.

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Guarded Suspension Pattern:
Implementing a Guarded Block

● A more efficient guard invokes Object.wait to suspend the current thread.
The invocation of wait does not return until another thread has issued a
notification that some special event may have occurred — though not
necessarily the event this thread is waiting for:

● This blocks the thread, preventing it from further executing code until it
receives the notification to proceed.

reference: http://docs.oracle.
com/javase/tutorial/essential/concurrency/guardmeth.html

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#wait()
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Guarded Suspension Pattern: Brief
Synopsis wait(), notify(), notifyAll()

● Wait, Notify, and NotifyAll are final methods of the Object class.

● wait() is an overloaded function that comes in three varities: wait(), wait(long timeout, int nanos),
wait(long timeout). This allows you to specify how long the thread is willing to wait.

● Invoking these methods cause the current thread (call it T) to place itself in a wait state for this
object and then to relinquish any and all synchronization claims on this object. Thread T
becomes disabled for thread scheduling purposes and lies dormant until one of four things
happens:

○ Some other thread invokes the notify method for this object and thread T happens to be
arbitrarily chosen as the thread to be awakened.

○ Some other thread invokes the notifyAll() method for this object.

○ Some other thread interrupts thread T.

○ The specified amount of real time has elapsed, more or less. If timeout is zero, however,
then real time is not taken into consideration and the thread simply waits until notified.

reference: http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

http://docs.oracle.com/javase/7/docs/api/java/lang/Thread.html#interrupt()
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Guarded Suspension Pattern:
notify(), notifyAll()

● notify() - Wakes up a single thread that is waiting for the object's monitor

lock.

● If more than one thread is waiting for the object's monitor lock, the notify

method wakes up an arbitrary thread that is waiting on the object's monitor
lock.

● notifyAll() - Wakes up all threads waiting on the object's monitor lock

reference: http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html

Guarded Design Pattern: Negatives

● Because it is blocking, the guarded suspension pattern
is generally only used when the developer knows that a
method call will be suspended for a finite and
reasonable period of time. If the blocking can be for an
indefinite amount of time, use the Balking Design
Pattern

● If a method call is suspended for too long, then the

overall program will slow down or stop, waiting for the
precondition to be satisfied.

reference: http://en.wikipedia.org/wiki/Guarded_suspension

http://en.wikipedia.org/wiki/Blocking_(computing)
http://en.wikipedia.org/wiki/Guarded_suspension

Guarded Design Pattern: Negatives
Continued

● If multiple threads are waiting to access the same method, the Guarded
Design Pattern doesn't pick which thread will execute the method next.

● Thread notification isn't under the programmers' control

● In order to be able to pick which thread will be executed next, use the
Scheduler design pattern instead.

reference: Multi-Thread Design Patterns by Mark Grand, Clickblocks LLC
http://www.ajug.org/meetings/download/Multi-Threading_Design_Patterns.pdf

http://www.ajug.org/meetings/download/Multi-Threading_Design_Patterns.pdf

Guarded Design Pattern: Negatives
Continued

The Scheduler Design Pattern

It controls the order of when waiting threads
can execute single threaded code in a multi-
threaded program.

Disadvantages:
Adds lot of overhead on when a synchronized
method can be executed.
 references: http://en.wikipedia.org/wiki/Scheduler_pattern

http://en.wikipedia.org/wiki/Scheduler_pattern

Guarded Design Patten Negatives:
Continued

● Always invoke wait() inside a loop that tests for the

condition being waited for. Don't assume that the
interrupt was for the particular condition you were
waiting for, or that the condition is still true because the
notify isn't thread specific.

refernce: http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

http://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

Guarded Suspension: Related
Patterns

The Two-Phase Termination design pattern can
be used with the Guarded Suspension design
pattern.

reference: Multi-Thread Design Patterns by Mark Grand, Clickblocks LLC
http://www.ajug.org/meetings/download/Multi-Threading_Design_Patterns.pdf

http://www.ajug.org/meetings/download/Multi-Threading_Design_Patterns.pdf

Double-Checked Locking:
Introduction

● Is a software design pattern used to reduce the overhead of acquiring a
lock which was more significant in the past.

● It first testing the locking condition without actually acquiring the lock. If the
first test for locking passes, then the actual locking implementation occurs.

● It uses the technique of lazy initialization

reference: http://en.wikipedia.org/wiki/Double-checked_locking

http://en.wikipedia.org/wiki/Software_design_pattern
http://en.wikipedia.org/wiki/Lock_(computer_science)
http://en.wikipedia.org/wiki/Double-checked_locking

Double-Checked Locking: Lazy
Initialization

● Why use lazy initialization - because the performance of
early JVMs wasn't very good.

Better yet, what is lazy initialization?

● Lazy initialization delays the creation of an object, the

calculation of a value, or some other expensive process
until the first time it is needed.

reference - http://en.wikipedia.org/wiki/Lazy_initialization
reference: Java Concurrency In Practice by Brian Goetz, pg. 348.

http://en.wikipedia.org/wiki/Lazy_initialization

Double-Checked Locking: Lazy
Initialization Example
Example of Lazy Initialization using the factory method pattern in java.

public class Fruit {
 private String typeName;
 private static Map<String, Fruit> types = new HashMap<String, Fruit>();
 private Fruit(String typeName) {
 this.typeName = typeName;
 }

 public static Fruit getFruitByTypeName(String type) {
 Fruit fruit;

 if (!types.containsKey(type)) {
 // Lazy initialization
 fruit = new Fruit(type);

 types.put(type, fruit);
 } else {
 // Okay, it's available currently
 fruit = types.get(type);
 }

 return fruit;
 }

Here is the lazy initialization of the Fruit object. If the String
type parameter provided in the function, isn't a key, then a
new fruit object is created, else the function returns an
already existing fruit type.
reference: http://en.wikipedia.org/wiki/Lazy_initialization

http://en.wikipedia.org/wiki/Lazy_initialization

Double-Checked Locking: How It
Works

● It checks whether or not you need to

initialize without synchronizing, lazy
initialization.

● If the object it is looking for isn't null then use
it.

● Else if it is null, synchronize and check
again, to make sure the resource isn't
initialized and then allow only one thread to
initialize it.

reference: Java Concurrency In Practice by Brian Goetz, pg. 348.

Double-Checked Locking:
Implementation Example

Implementation Double-Checked Locking to the
lazy initialization example
 public static Fruit getFruitByTypeNameHighConcurrentVersion(String type) {
 Fruit fruit;

 if (!types.containsKey(type)) {
 synchronized (types) {
 if (!types.containsKey(type)) {
 // Lazy initialization
 types.put(type, new Fruit(type));
 }
 }
 }

 fruit = types.get(type);

 return fruit;
 }

reference: http://en.wikipedia.org/wiki/Lazy_initialization

Make sure that after acquiring
the lock on the types object that
no other thread has created a
fruit object. If not, then use lazy
initialization to create a new Fruit
object.

http://en.wikipedia.org/wiki/Lazy_initialization

Double-Checked Locking: What can
go wrong

How can Double-Checked Locking fail Prior to Java 5.0

● The problem with double-checked locking is that there is no guarantee it
will work on single or multi-processor machines.

● The issue of the failure of double-checked locking is not due to
implementation bugs in JVMs but to the older Java platform memory
model.

● The memory model allowed "out-of-order writes" to occur and is why
Double-Checked Locking fell out of favor..

reference: http://www.ibm.com/developerworks/java/library/j-dcl/index.html

http://www.ibm.com/developerworks/java/library/j-dcl/index.html

Double-Check Locking: Failing Due
To Out of Order Memory Writes
A classic example of a partially initialized object escaping during its construction.
public class PieChucker {

// Singleton instance, lazily initialized
private static PieChucker instance;
public static PieChucker getInstance() {

if(instance == null) {
synchronized(PieChucker.class) {

if(instance == null) {
instance = new PieChucker();

}
}

}
return instance;

}

// Private as it’s only constructed by getInstance()
private PieChucker() {
}

public void fling(Target target) {
// … chuck pie at target
}

}

Reference: http://tech.puredanger.com/2007/06/15/double-checked-locking/

Consider this scenario:
Thread 1 enters getInstance(), sees null on both if checks,
and starts constructing the singleton.

Thread 2 enters getInstance() and checks the first if check.

At this point, thread 2 has not yet entered the synchronized
block, so has not established a “happens-before” relationship
with Thread 1.

It is thus undefined whether Thread 2 will see a fully
constructed instance (you got lucky!), a partially constructed
instance (probably real bad), or null (causing two singletons to
get constructed and breaking the singelton-ness).

http://tech.puredanger.com/2007/06/15/double-checked-locking/

Double-Check Locking: Solutions
Solutions to the Broken Double-Checked Locking pattern:

● Synchronized locking – Lazy Initialization

● Double-checked locking with volatile – Lazy Initialization

● Static initialization – Eager Initialization

reference: http://tech.puredanger.com/2007/06/15/double-checked-locking/

http://tech.puredanger.com/2007/06/15/double-checked-locking/

Double-Checked Locking: Solutions
Since Java 5.0

Java 5.0 added the volatile keyword was
specifically changed to ensure that Double-
Checked Locking is safe.

reference: http://www.javamex.com/tutorials/double_checked_locking_fixing.shtml

http://www.javamex.com/tutorials/double_checked_locking_fixing.shtml

Conclusion

Overall balking design patterns seem either
obsolete or possibly dangerous to use.

The Guarded Suspension Method seems
antiquated when compared to the scheduler
design pattern which provides finer granularity
for thread notification.

Conclusion Continue

The Double-Check Locking design pattern was
once very useful when the overhead for
synchronizing on an object was very expensive.

With modern JVMs, the overhead cost for
synchronizing isn't as detrimental to the
program.

Conclusion Continued

Also, there doesn't seem to be consensus
regarding whether or not this design pattern
prevents out of order memory writes due to
an object's ability to escape during its
construction.

Conclusion Continued

Another reason for balking patterns
becoming obsolete is the use of functional
programming languages like Clojure,
Groovy, and other languages/libraries that
incorporate Software Transactional Memory
(STM).

STM makes an object's state immutable
which mitigates concerns of it being in an
incorrect state during concurrent operations.

References

1. "Overview of Design Patterns." Design Pattern Synopses. Web. <http://www.mindspring.com/~mgrand/pattern_synopses.
htm>.

2. "Balking Pattern." Wikipedia. Wikimedia Foundation. Web. <http://en.wikipedia.org/wiki/Balking_pattern>.
3. http://wendang.baidu.com/view/df10870a581b6bd97f19eafb.html?from=related
4. "Guarded Blocks." (The Javaâ�¢ Tutorials Essential Classes Concurrency). Web. <http://docs.oracle.

com/javase/tutorial/essential/concurrency/guardmeth.html>.
5. "Object (Java Platform SE 7)." Oracle Documentation. Web. <http://docs.oracle.com/javase/7/docs/api/java/lang/Object.

html>.
6. "Guarded Suspension." Wikipedia. Wikimedia Foundation. Web. <http://en.wikipedia.org/wiki/Guarded_suspension>.
7. http://www.ajug.org/meetings/download/Multi-Threading_Design_Patterns.pdf
8. "Scheduler Pattern." Wikipedia. Wikimedia Foundation. Web. <http://en.wikipedia.org/wiki/Scheduler_pattern>.
9. "Double-checked Locking." Wikipedia. Wikimedia Foundation. Web. <http://en.wikipedia.org/wiki/Double-

checked_locking>.
10. "Lazy Initialization." Wikipedia. Wikimedia Foundation. Web. <http://en.wikipedia.org/wiki/Lazy_initialization>.

11. "Double-checked Locking and the Singleton Pattern." 302 Found. Web. <http://www.ibm.
com/developerworks/java/library/j-dcl/index.html>.

12. "One More Look at Double-Checked Locking." : Pure Danger Tech. Web. <http://tech.puredanger.
com/2007/06/15/double-checked-locking/>.

13. "Double-checked Locking (DCL) and How to Fix It (ctd)." Double-checked Locking. Web. <http://www.javamex.
com/tutorials/double_checked_locking_fixing.shtml>.

14. Goetz, Brian. Java Concurrency in Practice. Upper Saddle River, NJ: Addison-Wesley, 2006. Print.

http://wendang.baidu.com/view/df10870a581b6bd97f19eafb.html?from=related
http://www.ajug.org/meetings/download/Multi-Threading_Design_Patterns.pdf

