

TESTING FRAMEWORKS

Gayatri Ghanakota

OUTLINE

 �  Introduction to Software Test Automation.
◦  What is Test Automation.

◦  Where does Test Automation fit in the software life cycle.

◦  Why do we need test automation.

�  Test Automation using Testing frameworks.

◦  What is a testing framework.

◦  Why do we need a testing framework.

◦  Types of testing frameworks.

◦  Comparison of different frameworks.

�  Shift from Waterfall to Agile.

�  Test Driven Development and Behavior Driven Development.

�  Summary

Introduction To Software Test
Automation

What is Test Automation

�  Test automation is the use of software (under a setting of test
preconditions) to execute tests and then determine whether the actual
outcomes and the predicted outcomes are the same.

�  For example, Windows Vista offers per-application volume. It is possible
to turn down the volume on a game while leaving Windows Media Player
playing loud. To do this, right-click on the speaker icon in the lower-
right-hand corner of your screen and select "Open Volume Mixer."
Moving the slider for an application down should cause its volume to
decrease. Testing this manually is easy. Just play a sound, lower the
volume, and listen. Now automating this rather than doing it manually is
the process of test automation.

Where does Test Automation fit in
the Software Life Cycle

•  Considering the earlier software life cycles such as the waterfall model

the test automation appears in this life cycle during the implementation

and testing phase.

 REQUIREMENTS

DESIGN

IMPLEMENTATION

TESTING

OPERATIONS

TEST
AUTOMATION

TEST PLAN

Why do we need Test Automation
�  Companies not only want to test software adequately, but also as quickly

and thoroughly as possible. To accomplish this goal, organizations are

turning to automated testing.

�  To increase the test coverage

�  Reduces the need for manual testing and discovers defects manual

testing cannot expose and also manual testing is error prone and a time

consuming process.

�  Running the tests again and again gives us the confidence that the new

work we added to the system did not break the code that used to work

and also to make sure that the changes we introduced are working.

�  Executing the tests (particularly acceptance tests) can also help us

understand what portion of the desired functionality has been

implemented.

�  The set of the automated test suite can form a regression test suite. The

purpose of the regression suite is to make sure that the software behavior

is unchanged unless due to data change or latest software.

�  Automating also reduces the time taken for regression testing.

�  Automated unit test suite helps find the problems at an earlier stage and

solve them.

Test Automation Using Testing
Frameworks

 
What is a Testing Framework 
 �  A testing framework or more specifically a testing automation framework is an

execution environment for automated tests. It is the overall system in which the

tests will be automated.

�  It is defined as the set of assumptions, concepts, and practices that constitute a

work platform or support for automated testing.

�  The Testing framework is responsible for:

§  Defining the format in which to express expectations.

§  Creating a mechanism to hook into or drive the application under test

§  Executing the tests

§  Reporting results

�  Properties of a testing framework:

§  It is application independent.

§  It is easy to expand, maintain and perpetuate.

Why we need a Testing Framework
�  If we have a group of testers and suppose if each project implements a

unique strategy then the time needed for the tester become productive in the

new environment will take long.

�  To handle this we cannot make changes to the automation environment for

each new application that comes along. For this purpose we use a testing

framework that is application independent and has the capability to expand

with the requirements of each application.

�  Also an organized test framework helps in avoiding duplication of test cases

automated across the application.

�  In short Test frameworks helps teams organize their test suites and in turn

help improve the efficiency of testing.

Types Of Testing Frameworks

Testing
Frameworks

Modular

Data-
Driven

Keyword-
Driven

Hybrid

Modular Testing Framework
•  The Modularity testing framework is built on the concept of abstraction.

•  This involves the creation of independent scripts that represent the modules

of the application under test. These modules in turn are used in a hierarchical

fashion to build large test cases.

•  Thus it builds an abstraction layer for a component to hide that component

from the rest of the application. Thus the changes made to the other part of the

application do not effect that component.

Module1 Module2 Module N Module N+1 Module N+2 Module N+10 … …

Test
Script

Test
Script

Example of Modular Testing Framework
�  To demonstrate the modular framework we use the calculator program.

�  Consider the basic functions of the calculator such as addition,

subtraction, multiplication, division which are part of the Standard view.

�  We create scripts for these functions as follows:

 Add:

 Sub Main

 Window Set Context, "Caption=Calculator", "“

 PushButton Click, "ObjectIndex=10“ ‘Press 5

 PushButton Click, "ObjectIndex=20“ ‘Press +

 PushButton Click, "ObjectIndex=14“ ‘Press 6

 PushButton Click, "ObjectIndex=21“ ‘Press =

 Result = LabelUP (CompareProperties, "Text=11.", "UP=Object Properties")

 ‘Compare Expected to Actual Results

End Sub

�  In a similar way we create scripts for subtraction, multiplication and division.

�  At the next level of hierarchy, we create two scripts for standard view and

scientific view of which the standard view contains calls to the scripts we

created as before.

Add Subtract Multiply Division

Standard
View

Scientific
View

Driver Script

Log Sin

The Driver script is the top most level of hierarchy which contains the scripts

of standard and scientific view.

Driver Script:

Sub Main

 'Test the Standard View

 CallScript "Test Script Mod Framework - Standard"

 'Test the Scientific View

 CallScript "Test Script Mod Framework - Scientific“

End Sub

Thus this framework introduces a high level of modularization. So when there

is a change in the functionality we can change the bottom level script without

effecting all the other test cases that test that control.

Advantages:

�  Modular division of scripts leads to easier maintenance and also the

scalability of the automated test suites.

�  The functionality is available in easy to use test libraries so creating new

driver scripts for different tests is easy and fast.

Disadvantages:

•  The main problem with modular frameworks is that the test script have

test data embedded in them. So when the test data needs to be updated

we need to change the code of the script. This becomes a big problem

when the test script is large.

 For this purpose, data- driven testing frameworks have been

introduced.

Modular Testing Framework - Contd

Data-Driven Testing Framework
�  Data driven testing is where the test input and the expected output results

are stored in a separate data file (normally in a tabular format) so that a

single driver script can execute all the test cases with multiple sets of

data.

�  The driver script contains navigation through the program, reading of the

data files and logging of the test status information.

Data File
Driver Script

Actual Output
Expected
Output

= =

Example of Data Driven Testing Framework
•  To demonstrate the data driven testing framework we use the login page

of the flight reservation

•  The first step involves creating the test data file. (testdata.csv)

•  This data file contains the different types of input data which will be given

to the driver script.

Test Case Number1 Operator Number2 Expected
Result

 Add 2 + 3 5

 Subtract 3 - 2 1

 Multiply 2 * 3 6

 Divide 2 / -2 -1

•  In the next step we create a driver script and make references to the test
data file.

 data = open (’ testdata.csv’) . read ()

 l i n e s = data . s p l i t l i n e s () #excluding the header row

 for line in lines:

 Read Number1

 Read Number2

 Read Operator

 Calculate the result using the Operator on

 Number 1 and Number2

 Compare the result to the expected result

•  This driver script reads the data from the data file computes the value and
compares it with the expected result from the data file.

Advantages:

•  This framework reduces the number of overall test scripts needed to

implement all the test cases.

•  Less amount of code is required to generate all the test cases.

•  Offers greater flexibility when it comes to maintenance and fixing of bugs.

•  The test data can be created before test implementation is ready or even
before the system to be tested is ready.

Disadvantages:

•  The test cases created are similar and creating new kind of tests requires

creating new driver scripts that understand different data. Thus the test data

and driver scripts are strongly related that changing either requires changing
the other.

 For this purpose keyword driven testing frameworks have been introduced.

Data-Driven Testing Framework - Contd

Keyword- Driven Testing Framework
�  Keyword driven testing is an application independent framework utilizing

data tables and self explanatory keywords to explain the actions to be

performed on the application under test.

�  Not only is the test data kept in the file but even the directives telling

what to do which is in the test scripts is put in external input data file.

�  These directives are called keywords. The keyword based testing is an

extension to the data driven testing.

Keywords/
Actions Test Data Driver

Script
input output Test

Results

Example of Keyword Driven Testing Framework

�  To demonstrate the keyword driven testing we take the actions performed by

the mouse when making calculations.

�  We create a table that maps the actions performed with the mouse on the

window of the calculator application. In this table,

◦  The windows column represents the application for which we are

performing the mouse action.

◦  The control column represents the control that we are clicking with the

mouse.

◦  The action column represents the action performed by the mouse.

◦  The argument column contains the specific control value.

 Window Control Action Arguments

 Calculator Menu View, Standard

 Calculator Pushbutton Click 2

 Calculator Pushbutton Click +

 Calculator Pushbutton Click 3

 Calculator Pushbutton Click =

 Calculator Verify Result 5

 Calculator Clear

 Calculator Pushbutton Click 5

 Calculator Pushbutton Click -

 Calculator Pushbutton Click 3

 Calculator Pushbutton Click =

 Calculator Verify Result 2

�  After creating the table, we create a set of scripts for reading in the table, executing each
step based on the keyword contained in the action field and logs any relevant information.

�  The below pseudo code represents this test of scripts.

 Main Script / Program

 Connect to data tables.

 Read in row and parse out values.

 Pass values to appropriate functions.

 Close connection to data tables.

 Return

 Menu Module Set focus to window.

 Select the menu pad option.

 Return.

 Pushbutton Module Set focus to window.

 Push the button based on argument.

 Return.

 Verify Result Module Set focus to window.

 Get contents from label.

 Return

 Compare contents with argument value.

 Log results.

 Return.

Advantages:

�  It has all the advantages that data driven testing has.

�  Automation expertise is not required to maintain or create a new set of test
cases.

�  Keywords are reused across multiple test cases.

Disadvantages:

�  The main problem is that this requires a more complicated framework than
the data driven framework.

�  With the keyword driven approach the test cases get longer and complex
and this is due to the greater flexibility that this approach offers.

 So in order to combine the strengths of all the frameworks and mitigate
their weaknesses we use the hybrid testing framework.

Keyword- Driven Testing Framework

Hybrid Testing Framework

�  Hybrid testing framework is the combination of modular, data-driven and
keyword driven testing frameworks.

�  This combination of frameworks helps the data driven scripts take
advantage of the libraries which usually accompany the keyword driven
testing.

Driver Script

Test
Script1

Test
Script2

Test
Script3 . . .

Test Script
N

Function Library
Data
File

Modular

Keyword and Data driven

Example of Hybrid Testing Framework

The hybrid framework for the calculator can be shown as follows:

Test
Script

Standard
View

Scientific
View

Test Data Pool Keyword/Actions File

Driver Script Environmental
Variables

Test Results
Add

Sub

Mul

Log

Sin

Cos

Comparison of Frameworks
 Approach Advantages Disadvantages

 Modular testing
framework

 Modular approach
 Reusable functions
 Hierarchical Structure

 Test data within the
scripts limits reusability,

Test script is
dependent on software.

 Data driven testing
framework

Improved
Maintainability

 Dependency on
technical expertise,

Test script is
dependent on software.

 Keyword driven testing
framework

 Ease of maintenance,
Scalability, Less
dependency of

software.

Dependency on
technical expertise,
Requires large effort

 Hybrid testing
framework

 Integrates the
advantages of all the

other frameworks.

 Increased Complexity

Shift from Waterfall to Agile

�  We do not see a working version of the software until late in the waterfall
life cycle. Problems may be more costly to fix in this phase than they would
have been earlier in the life cycle.

�  Using test automation in the water fall model with feedback does not have
many advantages as only regression testing is covered in the test
automation and every time regression testing of the previous version has
to be executed.

�  Hence it is required to start test automation early in the software
development life cycle.

�  Test automation with agile methodologies has advantages compared with
the traditional life cycles as testing is done throughout the life cycle
process.

�  In the agile life cycle the test automation execution starts early in the
software life cycle.

Testing Frameworks in the Agile

�  Agile life cycles are characterized by short and rapid test cycles and

frequent change requests. Thus test automation plays a crucial role in

software testing.

�  Any type of testing framework can be implemented in the agile

environment but with the short iterations and rapidly changing

requirements it becomes difficult to maintain the test automation suite.

�  In the agile environments, testing plays a crucial role through the different

phases of iterations. It involves continuous integration, unit testing (which

is usually done using test driven development) and constant regression

testing which is difficult to accomplish using testing frameworks.

�  Also, achieving maximum code and functionality coverage using testing

frameworks is difficult.

 Hence testing frameworks are not a good fit for the agile environment.

Test Driven Development
&

Behavior Driven Development

�  Test driven development is a technique of using automated unit tests to
drive the design of software and force decoupling of dependencies.

 With traditional testing a successful test finds one or more defects. But
using TDD we have a clear measure of success when the test no longer
fails. Thus TDD increases our confidence that the system meets the
requirements and that the system is working properly when compared to
the confidence that traditional testing provides.

 Why TDD?

�  To avoid wasting time on debugging.

�  To improve the quality of code.

�  To increase confidence.

�  Behavior driven development is an extension to the test driven

development in that it focuses on the behavior of the system rather than

the implementation aspect of the system. Thus it gives a clear

understanding of what the system should do to both the developer as

well as the customer making the testing process even more efficient.

 Why BDD?

�  Promotes Outside-In Development.

�  BDD = TDD + automated acceptance testing.

Summary

�  The test framework should be application-independent.

�  The test framework must be easy to expand, maintain, and perpetuate.

�  Data driven testing is the quickest and easiest to implement if we have a
technical expertise.

�  Keyword driven testing is the hardest and most time consuming but once
implemented it is the easiest to maintain.

�  Hybrid testing combines the advantages of all the other frameworks but
requires technical expertise and is useful for long term projects.

�  With agile methodologies, test driven development and behavior driven
development are more useful as they ensure testing of the application
to the fullest.

References

�  http://safsdev.sourceforge.net/Default.htm

�  http://www.ibm.com/developerworks/rational/library/591.html

�  http://msdn.microsoft.com/en-us/library/

ff649520.aspx#mtf_ch02_softwaredevelopment

�  http://eliga.fi/Thesis-Pekka-Laukkanen.pdf

�  http://www.agiledata.org/

�  http://www.rimtengg.com/iscet/proceedings/pdfs/se/77.pdf

