
A Brief Introduction to Static Analysis

Sam Blackshear

March 13, 2012



Outline

A theoretical problem and how to ignore it

An example static analysis

What is static analysis used for?

Commercial successes

Free static analysis tools you should use

Current research in static analysis

2



An Interesting Problem

We’ve written a program P and we want to know...

Does P satisfy property of interest φ (for example, P does not
dereference a null pointer, all casts in P are safe, ...)

Manually verifying that P satisfies φ may be tedious or
impractical if P is large or complex

Would be great to write a program (or static analysis tool)
that can inspect the source code of P and determine if φ
holds!

3



An Inconvenient Truth

We cannot write such a program; the problem is undecidable in
general!

Rice’s Theorem (paraphrase): For any nontrivial program
property φ, no general automated method can determine
whether φ holds for P.

Where nontrivial means we can there exists both a program
that has property φ and one that does not.

So should we give up on writing that program?

4



A Way Out

Only if not getting an exact answer bothers us (and it shouldn’t).

Key insight: we can abstract the behaviors of the program into a
decidable overapproximation or underapproximation, then attempt
to prove the property in the abstract version of the program

This way, we can have our decidability, but can also make very
strong guarantees about the program

5



Analysis Choices

A sound static analysis overapproximates the behaviors of the
program. A sound static analyzer is guaranteed to identify all
violations of our property φ, but may also report some “false
alarms”, or violations of φ that cannot actually occur.

A complete static analysis underapproximates the behaviors of
the program. Any violation of our property φ reported by a
complete static analyzer corresponds to an actual violation of
φ, but there is no guarantee that all actual violations of φ will
be reported

Note that when a sound static analyzer reports no errors, our
program is guaranteed not to violate φ! This is a powerful
guarantee. As a result, most static analysis tools choose to be
sound rather than complete.

6



Visualizing Soundness and Completeness

All program behaviors

Overapproximate (sound) analysis

Underapproximate (complete) analysis

7



Outline

A theoretical problem and how to ignore it

An example static analysis

What is static analysis used for?

Commercial successes

Free static analysis tools you should use

Current research in static analysis

8



An Example Static Analysis : Sign Analysis

Classic example: sign analysis!
Abstract concrete domain of integer values into abstract domain of
signs (-, 0, +) ∪ {>,⊥}
Step 1: Define abstraction function abstract() over integer
literals:
-abstract(i) = - if i < 0
-abstract(i) = 0 if i == 0
-abstract(0) = + if i > 0

9



Sign Analysis (continued)

Define transfer functions over abstract domain that show how to
evaluate expressions in the abstract domain:

+ + + = +

- + - = -

0 + 0 = 0

0 + + = +

0 + - = -
...

+ + - = > (analysis notation for “unknown”)

{+, -, 0, >} + > = >
{+, -, 0, >} / 0 = ⊥ (analysis notation for “undefined”)
...

10



An Example Static Analysis (continued)

Now, every integer value and expression has been abstracted into a
{+, -, 0, >, ⊥}. An exceedingly silly analysis, but even so can be
used to:

Check for division by zero (as simple as looking for
occurrences of ⊥)

Optimize: store + variables as unsigned integers or 0’s as
false boolean literals

See if (say) a banking program erroneously allows negative
account values (see if balance variable is - or >)

More?

11



Outline

A theoretical problem and how to ignore it

An example static analysis

What is static analysis used for?

Commercial successes

Free static analysis tools you should use

Current research in static analysis

12



What Are Static Analysis Tools Used For?

To name a few:

Compilers (type checking, optimization)

Bugfinding

Formal Verification

13



Compilers - Type Checking

Most common and practically useful example of static analysis

Statically ensure that arithmetic operations are computable
(prevent adding an integer to a boolean in C++, for example)

Guarantee that functions are called with the correct
number/type of arguments

Real-world static analysis success story: “undefined variable
analysis” to ensure that an undefined variable is never read
- Common source of nondeterminism in C; causes nasty bugs
- Analysis built in to Java compiler! Statically guarantees that
an undefined variable will never be read

Object o; o.foo();

Compiler: “Variable o might not have been initialized”!

14



Compilers - Optimization

Examples:

Machine-aware optimizations: convert x*2 into x + x

Loop-invariant code motion: move code out of a loop

int a = 7, b = 6, sum, z, i;

for (i = 0; i < 25; i++)

z = a + b;

sum = sum + z + i;

Lift z = a + b out of the loop

Function inlining - save overhead of procedure call by inserting
code for procedure (related: loop unrolling)

Many more!

15



Bugfinding

Big picture: identify illegal or undesirable language behaviors, see
if program can trigger them

Null pointer dereference analysis (C, C++, Java . . . )

Buffer overflow analysis: can the program write past the
bounds of a buffer? (C, C++, Objective-C)

Cast safety analysis: can a cast from one type to another fail?

Taint analysis: can a program leak secret data, or use
untrusted input in an insecure way? (web application privacy,
SQL injection, . . . )

Memory leak analysis: is malloc() called without free()?
(C, C++) Is a heap location that is never read again
reachable from the GC roots? (Java)

Race condition checking: Can threads interleave in such a way
that threads t1 and t2 simultaneously access variable x , where
at least one access is a write?

16



Formal Verification

Given a rigorous complete or partial specification, prove that
no possible behavior of the program violates the specification

Assertion checking - user writes assert() statements that
fail at runtime if assertion evaluates to false. We can use
static analysis to prove that an assertion can never fail

Given a specification for an algorithm and a formal semantics
for the language the program is written in, can prove that the
implementation (not just the algorithm!) is correct. Note:
giving specification is sometimes harder than checking it!
Example: Specification for sorting. How would you define?
Takes input `, 0-indexed array of integers, returns `′,
0-indexed array of integers, where:

(1) for i in [0, length(`′) - 1) , `′[i ] ≤ `′[i + 1] (obvious)
(2) `′ is a permutation of ` (subtle!)

17



Formal Verification

Given a rigorous complete or partial specification, prove that
no possible behavior of the program violates the specification

Assertion checking - user writes assert() statements that
fail at runtime if assertion evaluates to false. We can use
static analysis to prove that an assertion can never fail

Given a specification for an algorithm and a formal semantics
for the language the program is written in, can prove that the
implementation (not just the algorithm!) is correct. Note:
giving specification is sometimes harder than checking it!
Example: Specification for sorting. How would you define?
Takes input `, 0-indexed array of integers, returns `′,
0-indexed array of integers, where:
(1) for i in [0, length(`′) - 1) , `′[i ] ≤ `′[i + 1] (obvious)

(2) `′ is a permutation of ` (subtle!)

17



Formal Verification

Given a rigorous complete or partial specification, prove that
no possible behavior of the program violates the specification

Assertion checking - user writes assert() statements that
fail at runtime if assertion evaluates to false. We can use
static analysis to prove that an assertion can never fail

Given a specification for an algorithm and a formal semantics
for the language the program is written in, can prove that the
implementation (not just the algorithm!) is correct. Note:
giving specification is sometimes harder than checking it!
Example: Specification for sorting. How would you define?
Takes input `, 0-indexed array of integers, returns `′,
0-indexed array of integers, where:
(1) for i in [0, length(`′) - 1) , `′[i ] ≤ `′[i + 1] (obvious)
(2) `′ is a permutation of ` (subtle!)

17



Outline

A theoretical problem and how to ignore it

An example static analysis

What is static analysis used for?

Commercial successes

Free static analysis tools you should use

Current research in static analysis

18



Commercial Successes

Astree

Coverity

Microsoft Static Driver Verifier

Java Pathfinder

Microsoft Visual C/C++ Static Analyzer

19



Astrée

Goal: Prove absence of undefined behavior and runtime errors in C
(null pointer dereference, integer, overflow, divide by zero, buffer
overflow, . . . )

Developed by INRIA (France), commercial sponsorship by
Airbus (aircraft manufacturer)

Astrée proved absence of errors for 132,000 lines of flight
control software in only 50 minutes!

Has also been used to verify absence of runtime errors in
docking software used for the International Space Station

Over 20 publications on techniques developed/used

More information at http://www.astree.ens.fr/,
http://www.absint.com/astree/index.htm

20

http://www.astree.ens.fr/
http://www.absint.com/astree/index.htm


Coverity

Goal: Catch bugs in C, C++, Java, and C# code during
development

Commercial spinoff of Stanford static analysis tools

Analysis is neither sound nor complete; emphasis is on finding
bugs that are easy to explain to the user:
“Explaining errors is often more difficult than finding them. A
misunderstood explanation means the error is ignored or,
worse, transmuted into a false positive.”

Used by over 1100 companies!

Very interesting CACM article on challenges of
commercializing a research tool A Few Billion Lines of Code
Later: Using Static Analysis to Find Bugs in the Real World.

http://www.coverity.com

21

http://www.coverity.com


Microsoft Static Driver Verifier (SLAM)

Goal: Find bugs in Windows device drivers written in C

Major effort in defining what constitutes a bug; requires
developing rigorous model for operating system and specifying
what behaviors are unacceptable

Uses model checking : intelligently enumerating and exploring
state space of program to ensure that no error states are
reachable from the initial state

Tool is sound and quite precise (5% false positive rate)

Works in a few minutes for typical drivers; up to 20 minutes
for complex ones

msdn.microsoft.com/en-us/windows/hardware/gg487506

22

msdn.microsoft.com/en-us/windows/hardware/gg487506


Java PathFinder

Goal: find bugs in mission-critical NASA code

NASA-developed model checker that runs on Java bytecode

Specialty is detecting concurrency errors such as race
conditions; also handles uncaught exceptions

Now free and open source! Can configure JPF to check
properties you are interested in by adding plugins

Drawback: can’t handle native Java libraries, must use models
instead

Sound, but not very precise

http://babelfish.arc.nasa.gov/trac/jpf

23

http://babelfish.arc.nasa.gov/trac/jpf


Microsoft Visual C/C++ Static Analyzer

Invoke using /analyze flag when compiling

Emphasis on finding security-critical errors such as buffer
overruns and printf format string vulnerabilities

Neither sound nor complete; lots of heuristics, but finds lots
of bugs

Developer legend John Carmack (of Quake fame) is a big fan:
http://altdevblogaday.com/2011/12/24/

static-code-analysis/

http://msdn.microsoft.com/en-us/library/ms182025.aspx

24

http://altdevblogaday.com/2011/12/24/static-code-analysis/
http://altdevblogaday.com/2011/12/24/static-code-analysis/
http://msdn.microsoft.com/en-us/library/ms182025.aspx


Outline

A theoretical problem and how to ignore it

An example static analysis

What is static analysis used for?

Commercial successes

Free static analysis tools you should use

Current research in static analysis

25



Some (Good) Free and Open Source Static Analysis Tools

Clang static analyzer

FindBugs

WALA

vellvm

26



Clang Static Analyzer

Part of llvm compiler infrastructure; works only on C and
Objective-C programs

Over 30 checks built into default analyzer

Built for debugging iOS apps, so includes extensive
functionality for finding memory problems

Neither sound nor complete

Can suppress false positives reported by tool by adding
annotations to code

Very snappy IDE Integration with Xcode

Support for C++ coming soon!

http://clang-analyzer.llvm.org/

27

http://clang-analyzer.llvm.org/


FindBugs

University of Maryland research tool by David Hovemeyer and
Bill Pugh (of SkipList fame)

Rather than using rigorous formal methods, focus is on
heuristics; in particular, identifying common “bug patterns”

Looks for 45 bug patterns such as “equal objects must have
equal hashcodes” and “wait not in loop”

Bugs are given a “severity rating” from 1 - 20

No soundness or completeness guarantee, but proven to be
very useful in practice

Integration with numerous IDEs including Eclipse and
NetBeans

http://findbugs.sourceforge.net/

28

http://findbugs.sourceforge.net/


SAFECode + Vellvm

Research tool from UPenn and UIUC

Automatically add memory safety to existing C source code:
no buffer overflows, dangling pointers, e.t.c

All you have to do is recompile your source using llvm-clang
with the SAFECode flag

Runtime overhead only 10-40%; small price to avoid getting
hacked!

Implementation of compiler transformation proven correct
with proof assistant (Coq). Very strong guarantee!

http://sva.cs.illinois.edu/downloads.html

29

http://sva.cs.illinois.edu/downloads.html


Outline

A theoretical problem and how to ignore it

An example static analysis

What is static analysis used for?

Commercial successes

Free static analysis tools you should use

Current research in static analysis

30



Current Research in Static Analysis: a Taste

Too many topics to enumerate here, but will mention a few:

Concurrency - the state spaces of large concurrent programs
are much too large to explore exhaustively. How can we make
guarantees about the correctness of concurrent programs
while only exploring a fraction of this space?

JavaScript and other dynamic languages - how can we deal
with dynamic behavior like reflection and dynamic code
evaluation with eval()?

Checking deeper properties - most static analyses prove
properties that must be true of all programs in their target
language. How can we automatically infer and check
properties that correspond more closely to program
correctness?

31



Further Reading

Foundations of Static Analysis - Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. Patrick Cousot
and Radhia Cousot. POPL 1977.

Astrée - A Static Analyzer for Large Safety-Critical Software.
Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme
Feret, Laurent Mauborgne, Antoine Miné, David Monniaux,
and Xavier Rival. PLDI 2003.

Coverity - Bugs as Deviant Behavior: A General Approach to
Inferring Errors in Systems Code. Dawson Engler, David Yu
Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. SOSP
2001.

32



Further Reading (continued)

Microsoft Static Driver Verifier/SLAM - Automatic Predicate
Abstraction of C Programs. Thomas Ball, Rupak Majumdar,
Todd D. Millstein, Sriram K. Rajamani, PLDI 2001.

Java PathFinder - Test Input Generation with Java
PathFinder. W. Visser, C. Pasareanu, S. Khurshid. ISSTA
2004.

FindBugs - Finding Bugs is Easy. David Hovemeyer and
William Pugh. OOPSLA 2004.

SAFECode - Formalizing the LLVM Intermediate
Representation for Verified Program Transformation. Jianzhou
Zhao, Santosh Nagarakatte, Milo M K Martin and Steve
Zdancewic. POPL 2012

33



Further Reading (still continued)

Analysis of concurrent programs - Reducing Concurrent
Analysis Under a Context Bound to Sequential Analysis.
Akash Lal and Thomas Reps. Formal Methods in System
Design (FMSD) 2009.

Static analysis of JavaScript - The Essence of JavaScript.
Arjun Guha, Claudiu Saftoiu, Shriram Krishnamurthi. ECOOP
2010.

Specification inference - Probabilistic, Modular and Scalable
Inference of Typestate Specifications, Nels E. Beckman and
Aditya V. Nori. PLDI 2011.

34



Executive Summary

Static analysis is infeasible in theoretical terms, but quite
feasible in practice

Static analysis has been used in industry for important
applications such as finding bugs in aircraft software

There are free and open source static analysis tools that can
help you find common problems in your code

You should use them!

Current research in static analysis is attacking interesting
problems that will continue to push the boundaries of
automated reasonng

35


