Favoring Isolated Mutability

he Actor Model of Concurrency

CSCI 5828: Foundations of Software Engineering
Lecture 24 — 04/11/2012

© Kenneth M. Anderson, 2012



(Goals

e Review the material in Chapter 8 of the Concurrency textbook
e that deals with the fundamentals of the actor approach
e and the use of UntypedActors in Akka
o \We’'ll review the use of
e TypedActors, and
e Mixing STM with the Actor Model

¢ In our next lecture

© Kenneth M. Anderson, 2012



“If it hurts, stop doing it”

¢ \With concurrency, we have learned

¢ that the shared mutability approach to concurrency leads to lots of
problems and difficulty

e As a result, we've been looking at alternatives
e \With the STM model, we looked at managed mutability
e where all values were immutable

e but a “ref” or an “identity” could be associated with different values
over time; with change occurring inside of transactions

e Now, we’ll look at the isolated mutability approach

e as embodied in the Actor Model of Concurrency

© Kenneth M. Anderson, 2012



Isolated Mutability and the Actor Model

e |solated Mutability is a design approach in which
e we can have mutable values
e but we make sure that for each mutable value
e only one thread has access to it
e The Actor Model of concurrency is one in which
e we have multiple lightweight processes, known as actors
e each actor can have mutable state if it wants
® because no other actor has access to that state

e actors instead pass immutable messages to each other if they need to
communicate or coordinate

¢ these messages are passed asynchronously and are processed in the
order that they arrive

© Kenneth M. Anderson, 2012



The Actor Model: Background

e This model has been around for a long time
e |t is built into the functional programming language, Erlang
e And was also built into Scala, a hybrid functional/OO language
e Scala is built on top of the JVM
e it can call Java code and Java can call Scala code
e as we saw when working with the STM

e The Akka framework is written in Scala

© Kenneth M. Anderson, 2012



Actor Model

¢ To emphasize
® Programs that use the Actor model are multithreaded
e pbut each individual actor is single threaded
* they each have access to mutable state
e but an actor cannot access the mutable state of another actor
e all one actor can do to another actor is send an immutable message

¢ since the messages are immutable, it is safe to share them between
actors

* [ikewise, all an actor can do is sit and wait for messages to arrive

© Kenneth M. Anderson, 2012



Actor Model == OOP++7?

e The book asserts that the actor model can be seen as taking OOP to the next
level

¢ \We have objects and they can have mutable state
e pbut they each run on their own thread
e and all we can do is send messages to them

e we can’t call their methods directly

© Kenneth M. Anderson, 2012



Actor Qualities (l)

e Each actor is an independent activity
® it can receive messages
® process them
¢ and send messages
e Each actor has a built in message queue
® it can receive multiple messages at once
¢ it can send a message at the same time that other actors are sending them

e As a result, there is plenty of opportunity for concurrency!

© Kenneth M. Anderson, 2012



Actor Qualities (ll)

e Actor does not equal Thread
* |[nstead, think of an actor as a task
e Recall how we separated task decomposition from thread allocation?
e Allowing us to create, for instance, a thread pool with 20 threads
e And then allocate 100 tasks to be processed by the thread pool
* The same thing happens with actors
e \We will likely have X actors being managed by Y threads where
o X>>Y

¢ \We can get away with this because of the actor lifecycle

© Kenneth M. Anderson, 2012



Actor Life Cycle

Created

- -

| Receive
‘. Message !

N\

Active

Process
Message

N

If an actor is active but has
no messages, thenitis
essentially blocked; we can
swap it out and let some
other actor run

© Kenneth M. Anderson, 2012

10




Creating Actors (l)

e Support for the Actor Model is built into Scala

e as a result, Scala’s syntax makes it easy to create actors and send
messages to them

e and to process messages as well
* I’'m not going to cover the details of Scala in this class
® SO we are going to use the Akka framework to implement actors in Java

¢ As a result, the information discussed in Lecture 19 on slides 34 and 35 is
relevant here

e you will need to follow those instructions in order to compile our example
programs

© Kenneth M. Anderson, 2012 11



Creating Actors (lI)

e The simplest actor in Akka has a class name of UntypedActor
e That class is located in the akka.actor package

¢ \We can think of it as an abstract class that has one method we need to
implement:

e public void onReceive(final Object message)

¢ \We implement this method to indicate how our actor will handle its messages
e Note: the parameter type for message is java.lang.Object
* |In practice, only immutable types can be sent to us

e and we do need to perform checks at run-time to figure out what
message was sent to us

© Kenneth M. Anderson, 2012

12



Creating Actors (lll)

e Qur increment program lives again!
* public class Counter extends UntypedActor {
e private int count = 0;
e public void onReceive(final Object message) {
1t (message instanceof Integer) {
e count += (Integer)message;

 System.out.println("Count: " + count);

© Kenneth M. Anderson, 2012

13



Creating Actors (V)

e Our increment program lives again!
« public class Drone extends UntypedActor {
e public void onReceive(final Object message) {
e 1f (message instanceof ActorRef) {
e ActorRef counter = (ActorRef)message;
« for (int 1 = 0; 1 < 5; 1++) |

e counter.tell(new Integer(l));

© Kenneth M. Anderson, 2012

14



Creating Actors (V)

e To instantiate one of our actors, we make use of the Actors factory in the
package akka.actors.

¢ \We pass the factory the class of the instance, we want created
e \We get back an ActorRef that points at our newly created Actor
e S0, when we create an instance of our Counter actor
e we do not get back a reference to Counter
e Wwe get back a reference to ActorRef
e \We can use that reference to send messages to the Counter

e \Why? We are not supposed to have access to instances of Counter
directly; if we did, Counter’s mutable variables might escape!

© Kenneth M. Anderson, 2012

15



Creating Actors (V)

e Our increment program lives again!
e The full program 1is 1in Increment.java
e Creating an ActorRef looks like this
* final ActorRef counter = Actors.actorOf(Counter.class);
e To start an Actor, you call start() on the ActorRef
e counter.start();
e To send an asynchronous message, use the tell() method
e counter.tell(new Integer(100));
e DEMO

© Kenneth M. Anderson, 2012

16



Creating Actors (V)

e The book had several examples of creating Actors
e DEMO
e One of its examples touches on creating Actors that have constructors

e Since you are not allowed to directly instantiate an Actor class, it is difficult
to pass values to an Actor’s constructor

e To do that, you need to create an anonymous instance of the
UntypedActorFactory class

e that factory has a create() method that returns instances of
UntypedActor and you can pass constructor arguments there

e You then pass the UntypedActorFactory to the actorOf() method

e |t uses the factory to create an instance and return an ActorRef

© Kenneth M. Anderson, 2012 17



Sending Messages

® You can send messages in two ways
e tell(final Object message) -- sends an asynchronous, immutable message
e Future ask(final Object message) -- sends a message, provides future
e Future is NOT java.util.concurrent.Future but it operates in the same way
e Once you get back a future
e you call Future.await() to block until a response is available

e You then call Future.result().get() to acquire the immutable response sent to
you by the other actor

e The call to result().get() can fail; you need to call
Future.result().isDefined() and only call get() when isDefined() returns true

DEMO

© Kenneth M. Anderson, 2012 18



Replying

e |f you receive a message from another actor, how do you reply?
e |f you are within the onReceive() method of an actor, you can simply call
e getContext().channel() to get access to an ActorRef
e Once you have the ActorRef, you can call tell() and ask() as normal

e S0, replying is really the same thing as just sending!

© Kenneth M. Anderson, 2012

19



Handling Multiple Actors

¢ \We already saw multiple actors in action with our simple Increment program
® The book returns to the PrimeFinder example
e |t has a simple design
¢ \We are provided the upper bound of our search and the number of partitions

e Our main program create one Actor per partition and sends it a range
using ask(), which returns a Future

e Each actor calculates the number of primes in that range and sends it
back

e Our main program loops through Future objects and calculates the total
number of primes

e As you will see, the program maxes out the cores of my machine when | run the
program

© Kenneth M. Anderson, 2012 20



Coordinating Actors (l)

¢ To show how Actors can coordinate with each other, the book returns to the
FileSize program

e Qur previous versions of this program made use of coordination
mechanisms (locks) and executors

e \With the isolated mutability approach of the Actor model

e Wwe can get a simpler solution and avoid some of the problems we
encountered earlier

e such as when we locked up the thread pool with a poor design related
to spawning tasks while traversing the file hierarchy

© Kenneth M. Anderson, 2012 21



Coordinating Actors (ll)

e The design of this system depends on two types of actors
e FileProcessors
e actors which process the size of a single directory
e we will create 100 of these to simulate the 100 threads we used earlier
e SizeCollector

e an actor who coordinates the FileProcessors and maintains a counter
to keep track of the total size of the directory

© Kenneth M. Anderson, 2012

22



Coordinating Actors (lll)

e The design of this system also depends on three messages
e RequestAFile:
e sent by a FileProcessor to the SizeCollector
e The effect is to tell the SizeCollector, “I’'m ready!”
* FileToProcess:
e sent by SizeCollector to FileProcessor or vice versa
e provides a pointer to a file or directory that needs to be processed
e FileSize
e sent by FileProcessor to SizeCollector

e returns the size of a file/directory that was processed

© Kenneth M. Anderson, 2012

23



Coordinating Actors (IV)

e Two key design points

e \When a FileProcessor starts up, it needs to tell the SizeCollector that it is
available

e |t overrides a lifecycle method preStart() to do that

¢ That method ensures that we send a RequestAFile message to the
SizeCollector

e A reference to the SizeCollector is passed in via FileProcessor’s
constructor

* \When a FileProcessor is given a directory, it does not recursively work its
way through all subdirectories. Instead, as it finds subdirectories, it sends
FileToProcess messages to SizeCollector

DEMO

© Kenneth M. Anderson, 2012

24



Results

e In both cases (PrimeFinder and FileSizer), with the Actor Model, we get
e comparable performance to the previous solutions
e much simpler code
® no locks
e all code written from single threaded standpoint

¢ allows for use of mutable variables with predictable behavior

© Kenneth M. Anderson, 2012

25



Summary

* Reviewed the basics of the Actor model
e Independent actors (which can be assigned to threads like tasks)
e with mutable state that is NOT shared
¢ with predictable semantics since the actor is single threaded
e communicating with other actors by passing immutable messages
® These constructs enable the isolated mutability approach to concurrency
® You get great performance with a very simple and straightforward model

¢ no thread allocation, no task decomposition, no locks

© Kenneth M. Anderson, 2012 26



Coming Up Next

¢ | ecture 25: Advanced Actor Model

e | ecture 26: Creating Agile Software

© Kenneth M. Anderson, 2012

27



