
© Kenneth M. Anderson, 2012

No Silver Bullet

CSCI 5828: Foundations of Software Engineering
Lecture 02 — 01/19/2012

1

© Kenneth M. Anderson, 2012

Lecture Goals

• Introduce thesis of Fred Brook’s No Silver Bullet

• Classic essay by Fred Brooks discussing “Why is SE so hard?”

2

© Kenneth M. Anderson, 2012

No Silver Bullet

• “There is no single development, in either technology or management
technique, which by itself promises even one order-of-magnitude
improvement within a decade in productivity, in reliability, in simplicity.”

• — Fred Brooks, 1986

• i.e. There is no magical cure for the “software crisis”

3

© Kenneth M. Anderson, 2012

Why? Essence and Accidents

• Brooks divides the problems facing software engineering into two categories

• essence: difficulties inherent, or intrinsic, in the nature of software

• accidents: difficulties related to the production of software

• Brooks argues that most techniques attack the accidents of software
engineering

4

© Kenneth M. Anderson, 2012

An Order of Magnitude

• In order to improve software development by a factor of 10

• first, the accidents of software engineering would have to account for 90%
of the overall effort

• second, tools would have to reduce accidental problems to zero

• Brooks doesn't believe that the former is true…

• and the latter is nigh impossible because each new tool or technique
solves some problems while introducing others

5

© Kenneth M. Anderson, 2012

The Essence

• Brooks divides the essence into four subcategories

• complexity

• conformity

• changeability

• invisibility

• Lets consider each in turn

6

© Kenneth M. Anderson, 2012

Complexity (I)

• Software entities are amazingly complex

• No two parts (above statements) are alike

• Contrast with materials in other domains

• Large software systems have a huge number of states

• Brooks claims they have an order of magnitude more states than
computers (i.e. hardware) do

• As the size of a system increases, both the number and types of parts
increase exponentially

• the latter increase is the most significant

7

© Kenneth M. Anderson, 2012

Complexity (II)

• You can't abstract away the complexity of the application domain. Consider:

• air traffic control, international banking, avionics software

• These domains are intrinsically complex and this complexity will appear in the
software system as designers attempt to model the domain

• Complexity also comes from the numerous and tight relationships between
heterogeneous software artifacts such as specs, docs, code, test cases,
etc.

8

© Kenneth M. Anderson, 2012

Complexity (III)

• Problems resulting from complexity

• difficult team communication

• product flaws; cost overruns; schedule delays

• personnel turnover (loss of knowledge)

• unenumerated states (lots of them)

• lack of extensibility (complexity of structure)

• unanticipated states (security loopholes)

• project overview is difficult

9

© Kenneth M. Anderson, 2012

Conformity (I)

• A lot of complexity facing software engineers is arbitrary

• Consider designing a software system to support an existing business
process when

• a new VP arrives at the company

• The VP decides to “make a mark” on the company and changes the
business process

• Our system must now conform to the (from our perspective) arbitrary
changes imposed by the VP

10

© Kenneth M. Anderson, 2012

Conformity (II)

• Other instances of conformity

• Having to integrate with a non-standard module interface

• Adapting to a pre-existing environment

• and if the environment changes (for whatever reason), you can bet that
software will be asked to change in response

• Main Point: It is almost impossible to plan for arbitrary change;

• instead, you just have to wait for it to occur and deal with it when it
happens

11

© Kenneth M. Anderson, 2012

Changeability (I)

• Software is constantly asked to change

• Other things are too, however, manufactured things are rarely changed
after they have been created

• instead, changes appear in later models

• automobiles are recalled only infrequently

• buildings are expensive to remodel

12

© Kenneth M. Anderson, 2012

Changeability (II)

• With software, the pressure to change is greater

• in a project, it is functionality that is often asked to change and software
EQUALS functionality (plus its malleable)

• clients of a software project often don't understand enough about software
to understand when a change request requires significant rework of an
existing system

• Contrast with more tangible domains

• Imagine asking for a new layout of a house after the foundation has
been poured

13

© Kenneth M. Anderson, 2012

Invisibility (I)

• Software is by its nature invisible; and it is difficult to design graphical
displays of software that convey meaning to developers

• Contrast to blueprints: here geometry can be used to identify problems
and help optimize the use of space

• But with software, its difficult to reduce it to diagrams

• UML contains 13 different diagram types (!)

• to model class structure, object relationships, activities, event handling,
software architecture, deployment, packages, etc.

14

© Kenneth M. Anderson, 2012

Invisibility (II)

• Hard to get both a “big picture” view as well as details

• Hard to convey just one issue on a single diagram

• instead multiple concerns crowd and/or clutter the diagram hindering
understanding

• This lack of visualization deprives the engineer from using the brain's
powerful visual skills

15

© Kenneth M. Anderson, 2012

What about “X”?

• Brooks argues that past breakthroughs solve accidental difficulties

• High-level languages

• Time-Sharing

• Programming Environments

• OO Analysis, Design, Programming

• …

16

© Kenneth M. Anderson, 2012

Promising Attacks on the Essence

• Buy vs. Build

• Don't develop software when you can avoid it

• Rapid Prototyping

• Use to clarify requirements

• Incremental Development

• don't build software, grow it

• Great designers

• Be on the look out for them, when you find them, don't let go!

17

© Kenneth M. Anderson, 2012

No Silver Bullet, Take 2

• Brooks reflects on No Silver Bullet‡, ten years later

• Lots of people have argued that their methodology, technique, or tool is
the silver bullet for software engineering

• If so, they didn't meet the deadline of 10 years or the target of a 10
times improvement in the production of software

• Others misunderstood what Brooks calls “obscure writing”

• e.g., “accidental” did not mean “occurring by chance”;

• instead, he meant that the use of technique A for benefit B
unfortunately introduced problem C into the process of software
development

18

‡ This reflection appears in The Mythical Man-Month, 20th Anniversary Edition

© Kenneth M. Anderson, 2012

The Size of Accidental Effort

• Some people misunderstood his point with the 90% figure

• Brooks doesn't actually think that accidental effort is 90% of the job

• its much smaller than that

• As a result, reducing it to zero (which is effectively impossible) will not give
you an order of magnitude improvement

19

© Kenneth M. Anderson, 2012

Obtaining the Increase

• Some people interpreted Brooks as saying that the essence could never be
attacked

• That's not his point; he said that no single technique could produce an
order of magnitude increase by itself

• He argues instead that several techniques in tandem could achieve it
but that requires industry-wide enforcement and discipline

• Brooks states:

• “We will surely make substantial progress over the next 40 years; an order
of magnitude improvement over 40 years is hardly magical…”

20

© Kenneth M. Anderson, 2012

Quiz Yourself

• Essence or Accident?

• A bug in a financial system is discovered that came from a conflict in state/
federal regulations on one type of transaction

• A program developed in two weeks using a whiz bang new application
framework is unable to handle multiple threads since the framework is not
thread safe

• A new version of a compiler generates code that crashes on 32-bit
architectures; the previous version did not

• A fickle customer submits 10 change requests per week after receiving the
first usable version of a software system

21

© Kenneth M. Anderson, 2012

Returning to SE Intro

• Lets continue our “Overview of Software Engineering” that was started in
Lecture 1

• This draws on material from Software Engineering: Theory and Practice by
Pfleeger and Atlee

• As such, some material is copyright © 2006 Pearson/Prentice Hall.

22

http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html
http://www.pearsonhighered.com/academic/product/0,3110,0131469134,00.html

© Kenneth M. Anderson, 2012

What is Software Engineering?

• Simply Put: It is solving problems with software-based systems

• Design and development of these systems require

• Analysis

• decomposing large problems into smaller, understandable pieces

• abstraction is the key

• Synthesis

• building large software systems from smaller building blocks

• composition is challenging

23

© Kenneth M. Anderson, 2012

Solving Problems (I)

• To aid us in solving problems, we apply

• techniques: a formal “recipe” for accomplishing a goal that is typically
independent of the tools used

• tools: an instrument or automated system for accomplishing something in
a better way, where “better” can mean more efficient, more accurate,
faster, etc.

24

© Kenneth M. Anderson, 2012

Solving Problems (II)

• To aid us in solving problems, we apply

• procedures: a combination of tools and techniques that, in concert,
produce a particular product

• paradigms: a particular philosophy or approach for building a product

• Think: “cooking style”: may share procedures, tools, and techniques with
other styles but apply them in different ways

• By analogy: OO approach to development vs. the structured approach

• Both approaches use similar things:

• reqs., design, code, editors, compilers, etc.

• But think about the problem in fundamentally different ways

25

© Kenneth M. Anderson, 2012

Software Engineering: The Good

• Software engineering has helped to produce systems that improve our lives in
numerous ways

• helping us to perform tasks more quickly and effectively

• supporting advances in medicine, agriculture, transportation, and other
industries

• Indeed, software-based systems are now ubiquitous

26

© Kenneth M. Anderson, 2012

Software Engineering: The Bad (I)

• Software is not without its problems

• Systems function, but not in the way we expect

• Or systems crash, make mistakes, etc.

• Or the process for producing a system is riddled with problems leading to
a failure to produce the entire system

• many projects get cancelled without ever producing a system

• One study in the late 80s found that in a survey of 600 firms, more than 35%
reported having a runaway development project. A runway project is one in
which the budget and schedule are completely out of control.

27

© Kenneth M. Anderson, 2012

Software Engineering: The Bad (II)

• CHAOS Report from Standish Group

• Has studied over 40,000 industry software development projects over the
course of 1994 to 2004.

• Success rates (projects completed on-time, within budget) in 2004 was
34%, up from 16.2% in 1994

• Failure rates (projects cancelled before completion) in 2004 was 15%,
down from 31% in 1994.

• In 2004, “challenged” projects made up 51% of the projects included in
the survey.

• A challenged project is one that was over time, over budget and/or
missing critical functionality

28

© Kenneth M. Anderson, 2012

Software Engineering: The Bad (III)

• Most challenged projects in 2004 had a cost overrun of under 20% of the
budget, compared to 60% in 1994

• The average cost overrun in 2004 was 43% versus an average cost overrun
of 180% in 1994.

• In 2004, total U.S. project waste was 55 billion dollars with 17 billion of that in
cost overruns; Total project spending in 2004 was 255 billion

• In 1994, total U.S. project waste was 140 billion (80 billion from failed
projects) out of a total of 250 billion in project spending

29

© Kenneth M. Anderson, 2012

Software Engineering: The Bad (IV)

• So, things are getting better (attributed to better project management skills
industry wide), but we still have a long way to go.

• 66% of the surveyed projects in 2004 did not succeed!

30

© Kenneth M. Anderson, 2012

Software Engineering: The Ugly (I)

• Loss of NASA’s Mars Climate Observer

• due to mismatch of English and Metric units!

• even worse: problem was known but politics between JPL and Houston
prevented fix from being deployed

• Denver International Airport

• Luggage system: 16 months late, 3.2 billion dollars over budget!

• IRS hired Sperry Corporation to build an automated federal income tax form
processing process

• An extra $90 M was needed to enhance the original $103 M product

• IRS lost $40.2 M on interest and $22.3 M in overtime wages because
refunds were not returned on time

31

© Kenneth M. Anderson, 2012

Software Engineering: The Ugly (II)

• Therac-25 (safety critical system: failure poses threat to life or health)

• Machine had two modes:

• “electron beam” and “megavolt x-ray”

• “megavolt” mode delivered x-rays to a patient by colliding high energy
electrons into a “target”

• Patients died when a “race condition” in the software allowed the
megavolt mode to engage when the target was not in position

• Related to a race between a “type ahead” feature in the user interface
and the process for rotating the target into position

32

© Kenneth M. Anderson, 2012

• An error is a mistake made by a human

• A fault is the manifestation of the error in a software artifact

• A failure is a departure from a system’s expected behavior

Terminology for Describing Bugs

33

© Kenneth M. Anderson, 2012

What is Good Software?

• “Good” is often associated with some definition of quality. The higher the quality, the
better the software.

• The problem? Many different definitions of quality!

• Transcendental: where quality is something we can recognize but not define (“I know
it when I see it”)

• User: where quality is determined by evaluating the fitness of a system for a particular
purpose or task (or set of tasks)

• Manufacturing: quality is conformance to a specification

• Product: quality is determined by internal characteristics (e.g. number of bugs,
complexity of modules, etc.)

• Value: quality depends on the amount customers are willing to pay

• customers adopt “user view”; developers adopt “manufacturing view”, researchers
adopt “product view”; “value view” can help to tie these together

34

© Kenneth M. Anderson, 2012

What is Good Software?

• Good software engineering must always include a strategy for producing
high quality software

• Three common ways that SE considers quality:

• The quality of the product (product view)

• The quality of the process (manufacturing view)

• The quality of the product in the context of a business environment (user
view)

• The results of the first two are termed the “technical value of a system”; The
latter is the “business value of a system”

35

© Kenneth M. Anderson, 2012

The Quality of the Product

• Users judge a system on external characteristics

• correct functionality, number of failures, types of failures

• Developers judge the system on internal characteristics

• types of faults, reliability, efficiency, etc.

• Quality models can be used to relate these two views

• An example is McCall’s quality model

• This model can be useful to developers: want to increase “reliability”
examine your system’s “consistency, accuracy, and error tolerance”

36

© Kenneth M. Anderson, 2012

The Quality of the Process (I)

• Quality of the development and maintenance process is as important as the
product quality

• The development process needs to be modeled

37

© Kenneth M. Anderson, 2012

The Quality of the Process (II)

• Modeling will address questions such as

• What steps are needed and in what order?

• Where in the process is effective for finding a particular kind of fault?

• How can you shape the process to find faults earlier?

• How can you shape the process to build fault tolerance into a system?

38

© Kenneth M. Anderson, 2012

The Quality of the Process (III)

• Models for Process Improvement

• SEI’s Capability Maturity Model (CMM)

• ISO 9000

• Software Process Improvement and Capability dEtermination (SPICE)

39

© Kenneth M. Anderson, 2012

Business Environment Quality (I)

• The business value being generated by the software system

• Is it helping the business do things faster or with less people?

• Does it increase productivity?

• To be useful, business value must be quantified

40

© Kenneth M. Anderson, 2012

Business Environment Quality (II)

• A common approach is to use “return on investment” (ROI)

• Problem: Different stakeholders define ROI in different ways!

• Business schools: “what is given up for other purposes”

• U.S. Government: “in terms of dollars, reducing costs, predicting savings”

• U.S. Industry: “in terms of effort rather than cost or dollars; saving time,
using fewer people”

• Differences in definition means that one organization’s ROI can NOT be
compared with another organization’s ROI without careful analysis

41

© Kenneth M. Anderson, 2012

Software Engineering: More than just Programming

• It should now be clear that software engineering is more than just

• programming, data structures, algorithms, etc.

• It takes advantage of these very useful computer science techniques but adds

• quality concerns

• testing, code reviews, validation and verification of requirements

• process concerns

• Are we using the right software life cycle? Are we monitoring our ability to
execute the process? Are we consistent? Are we getting better?

• reliance on tools, people, and support processes

• debugging, profiling, configuration management, deployment, issue tracking

42

© Kenneth M. Anderson, 2012

Summary

• In this lecture, we discussed

• Brooks’s definition of a silver bullet

• A single tool or technique that by itself produces an order of magnitude
improvement in the production of software

• and his argument for why there is no silver bullet for software engineering

• We continued our introduction to the field of software engineering

• Additional definitions and concerns

• Challenges faced by the field

• The importance of quality assurance and why it is difficult to define
“quality” for software engineering

43

© Kenneth M. Anderson, 2012

SE Conferences

• International Conference on Software Engineering (ICSE)

• http://www.icse-conferences.org/

• International Symposium on the Foundations of Software Engineering (FSE)

• Automated Software Engineering

• Many, many more; See for instance

• http://www.sigsoft.org/conferences/listOfEvents.htm

•

44

http://www.icse-conferences.org
http://www.icse-conferences.org
http://www.sigsoft.org/conferences/listOfEvents.htm
http://www.sigsoft.org/conferences/listOfEvents.htm

© Kenneth M. Anderson, 2012

Professional Societies

• For Computer Science in general

• ACM: Association for Computing Machinery

• http://www.acm.org/

• IEEE Computer Society

• http://www.computer.org/

• For Software Engineering

• ACM Special Interest Group on Software Engineering (ACM SIGSOFT)

• http://www.sigsoft.org/

45

http://www.acm.org
http://www.acm.org
http://www.computer.org
http://www.computer.org
http://www.sigsoft.org
http://www.sigsoft.org

© Kenneth M. Anderson, 2012

SE Journals

• The Big Two

• ACM Transactions on Software Engineering and Methodology

• http://tosem.acm.org/

• IEEE Transactions on Software Engineering

• <http://www.computer.org/portal/web/tse>

• Papers are also available at ACM’s and IEEE’s digital libraries

• ACM Digital Library: http://dl.acm.org/

• IEEE Digital Library: http://www.computer.org/portal/web/csdl

46

http://tosem.acm.org
http://tosem.acm.org
http://www.computer.org/portal/web/tse
http://www.computer.org/portal/web/tse
http://dl.acm.org
http://dl.acm.org
http://www.computer.org/portal/web/csdl
http://www.computer.org/portal/web/csdl

© Kenneth M. Anderson, 2012

SE-Related Sites/Blogs

• A great combination: a good developer with a blog

• loudthinking.com; inessential.com; http://daringfireball.net/

• http://joelonsoftware.com; http://ridiculousfish.com/blog/posts.html

• http://www.tbray.org/ongoing/; scripting.com; http://blog.wilshipley.com/

• http://jeff-vogel.blogspot.com/; http://notch.tumblr.com/

• More general: slashdot.org; stackoverflow.com; semat.org

• Humor:

• xkcd.org, The Order of the Stick, thedailywtf.com

• Please send me others that you find useful

47

http://loudthinking.com
http://loudthinking.com
http://inessential.com
http://inessential.com
http://daringfireball.net
http://daringfireball.net
http://joelonsoftware.com
http://joelonsoftware.com
http://ridiculousfish.com/blog/posts.html
http://ridiculousfish.com/blog/posts.html
http://www.tbray.org/ongoing/
http://www.tbray.org/ongoing/
http://scripting.com
http://scripting.com
http://blog.wilshipley.com
http://blog.wilshipley.com
http://jeff-vogel.blogspot.com
http://jeff-vogel.blogspot.com
http://notch.tumblr.com
http://notch.tumblr.com
http://slashdot.org
http://slashdot.org
http://stackoverflow.com
http://stackoverflow.com
http://www.semat.org/
http://www.semat.org/
http://xkcd.org/
http://xkcd.org/
http://www.giantitp.com/comics/oots0001.html
http://www.giantitp.com/comics/oots0001.html
http://thedailywtf.com
http://thedailywtf.com

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 3: Introduction to Software Life Cycles

• Lecture 4: Introduction to Concurrency

• Chapter 1 of the JVM book

48

