
The Wide Finder
Project

An overview of Tim Bray’s Wide Finder project by
Peter Robinson
Mar 19, 2010

What is a Wide Finder?

• Apache log files (ASCII) can be huge
(250+MB in our test case).

• Is there a way to process these files (FIND)
that is scalable with multiple cores (WIDE)?

Sample Input
host-24-225-218-245.patmedia.net - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 304 - "-" "NetNewsWire/
2.0b37 (Mac OS X; Lite; http://ranchero.com/netnewswire/)"
72-48-42-121.dyn.grandenetworks.net - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 200 44877 "-"
"Onfolio/2.02"
c529d19fd.cable.wanadoo.nl - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.rss HTTP/1.0" 301 310 "-" "BitTorrent/4.0.0"
c529d19fd.cable.wanadoo.nl - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.rss HTTP/1.0" 301 315 "-" "BitTorrent/4.0.0"
c529d19fd.cable.wanadoo.nl - - [01/Oct/2006:06:33:46 -0700] "GET /ongoing/ongoing.atom HTTP/1.0" 304 - "-" "BitTorrent/4.0.0"
lj602070.inktomisearch.com - - [01/Oct/2006:06:33:46 -0700] "GET /ongoing/When/200x/2004/04/18/Persuasion HTTP/1.0" 304 - "-"
"Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"
72-48-42-121.dyn.grandenetworks.net - - [01/Oct/2006:06:33:49 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 200 44877 "-"
"Onfolio/2.02"
cuscon24086.tstt.net.tt - - [01/Oct/2006:06:33:49 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 304 - "-" "Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US; rv:1.8.0.7) Gecko/20060909 Firefox/1.5.0.7"
fj5022.inktomisearch.com - - [01/Oct/2006:06:33:50 -0700] "GET /ongoing/When/200x/2004/05/03/Pedroni HTTP/1.0" 200 13140 "-"
"Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"

+ 1,000,000 more lines or so

http://ranchero.com/netnewswire/
http://ranchero.com/netnewswire/
http://help.yahoo.com/help/us/ysearch/slurp
http://help.yahoo.com/help/us/ysearch/slurp
http://help.yahoo.com/help/us/ysearch/slurp
http://help.yahoo.com/help/us/ysearch/slurp

What we’re trying to identify...

host-24-225-218-245.patmedia.net - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 304 - "-" "NetNewsWire/
2.0b37 (Mac OS X; Lite; http://ranchero.com/netnewswire/)"
72-48-42-121.dyn.grandenetworks.net - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 200 44877 "-"
"Onfolio/2.02"
c529d19fd.cable.wanadoo.nl - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.rss HTTP/1.0" 301 310 "-" "BitTorrent/4.0.0"
c529d19fd.cable.wanadoo.nl - - [01/Oct/2006:06:33:45 -0700] "GET /ongoing/ongoing.rss HTTP/1.0" 301 315 "-" "BitTorrent/4.0.0"
c529d19fd.cable.wanadoo.nl - - [01/Oct/2006:06:33:46 -0700] "GET /ongoing/ongoing.atom HTTP/1.0" 304 - "-" "BitTorrent/4.0.0"
lj602070.inktomisearch.com - - [01/Oct/2006:06:33:46 -0700] "GET /ongoing/When/200x/2004/04/18/Persuasion HTTP/1.0" 304 - "-"
"Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"
72-48-42-121.dyn.grandenetworks.net - - [01/Oct/2006:06:33:49 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 200 44877 "-"
"Onfolio/2.02"
cuscon24086.tstt.net.tt - - [01/Oct/2006:06:33:49 -0700] "GET /ongoing/ongoing.atom HTTP/1.1" 304 - "-" "Mozilla/5.0 (Windows; U;
Windows NT 5.1; en-US; rv:1.8.0.7) Gecko/20060909 Firefox/1.5.0.7"
fj5022.inktomisearch.com - - [01/Oct/2006:06:33:50 -0700] "GET /ongoing/When/200x/2004/05/03/Pedroni HTTP/1.0" 200 13140 "-"
"Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)"

+ 1,000,000 more lines or so

http://ranchero.com/netnewswire/
http://ranchero.com/netnewswire/
http://help.yahoo.com/help/us/ysearch/slurp
http://help.yahoo.com/help/us/ysearch/slurp
http://help.yahoo.com/help/us/ysearch/slurp
http://help.yahoo.com/help/us/ysearch/slurp

Desired Output

0.787870883942 0.797733
 2006/01/08/No-New-XML-Languages = 600
 2003/02/04/Construction = 600
 2004/04/27/RSSticker = 600
 2003/06/23/SamsPie = 700
 2003/09/18/NXML = 800
 2003/10/16/Debbie = 800
 2006/01/31/Data-Protection = 800
 2003/07/25/NotGaming = 1300
 2006/07/28/Open-Data = 2000
 2006/09/29/Dynamic-IDE = 8900

Elapsed Time User Time Count Breakdown

Sample Ruby Code
counts = {}
counts.default = 0

ARGF.each_line do |line|
 if line =~ %r{GET /ongoing/When/\d\d\dx/(\d\d\d\d/\d\d/\d\d/
[^ .]+) }
 counts[$1] += 1
 end
end

keys_by_count = counts.keys.sort { |a, b| counts[b] <=> counts
[a] }
keys_by_count[0 .. 9].each do |key|
 puts "#{counts[key]}: #{key}"
end

Need to ...
search the file and match to a reg exp.
output a breakdown for the number of matches
for each key

Fundamental steps we need to take...

• Open the file and read it

• Search the data and find all matches to a
regular expression

• Output counts of each unique key match

The Challenge

• Can this problem be scaled to multiple
cores?

What ensued

• When Tim Bray posed this challenge on his blog Ongoing, many people
stepped up to the plate. Although Tim Bray argues that this is fundamentally
a parallel IO problem, all solutions posted did no true parallel IO, but instead
minimized the amount of IO required, in addition to providing parallel
implementations of the actual calculations required.

• What is perhaps surprising is how much room for improvement there was
on this front.

• The benchmarking was done using at test file of about 250 MB, which was
easily small enough to fit in file cache. All results posted were done with the
cache warmed up, so essentially no reads from disk during timing.

• We will focus on the techniques used to optimize the text processing/
regular expression matching inherent to this problem.

Cold vs. Hot cache

7.0644030571 1.413628
 2005/07/27/Atomic-RSS = 600
 2003/02/04/Construction = 600
 2004/04/27/RSSticker = 600
 2003/06/23/SamsPie = 700
 2003/09/18/NXML = 800
 2003/10/16/Debbie = 800
 2006/01/31/Data-Protection = 800
 2003/07/25/NotGaming = 1300
 2006/07/28/Open-Data = 2000
 2006/09/29/Dynamic-IDE = 8900

0.785873889923 0.796048
 2005/07/27/Atomic-RSS = 600
 2003/02/04/Construction = 600
 2004/04/27/RSSticker = 600
 2003/06/23/SamsPie = 700
 2003/09/18/NXML = 800
 2003/10/16/Debbie = 800
 2006/01/31/Data-Protection = 800
 2003/07/25/NotGaming = 1300
 2006/07/28/Open-Data = 2000
 2006/09/29/Dynamic-IDE = 8900

Cold Hot

The difference between the first time a 250 MB file is read and subsequent reads is huge
(7.06 seconds vs. 0.785 elapsed time for this highly optimized implementation) due to the
file being cached in main memory. Comparisons on the Wide Finder website all are using
the cached file, not reading from disk. Thus, we’re not really doing IO at all, just reading
large blocks from memory.

Parallel IO

• True concurrency in IO requires specialized
hardware and file systems for this task
(RAID,striping, multiple disks, etc.)

• Will always be hardware limited.

Dealing with Reg
Expressions

• What all happens in this line of code?

- First, the regular expression needs to get
compiled.

- Then, we actually need to test the expression
against lines in the file.

ARGF.each_line do |line|
 if line =~ %r{GET /ongoing/When/\d\d\dx/(\d\d\d\d/\d\d/\d\d/
[^ .]+) }
 end
end

Dealing with Reg
Expressions

• We can move the compilation of the reg exp out
of the loop.

• We can eliminate lines that can’t match “GET /
ongoing/When/”

- String matching can actually be sublinear (Boyer-
Moore algorithm)

• Both of these create noticeable speedup.

pat = r"GET /ongoing/When/\d\d\dx/(\d\d\d\d/\d\d/\d\d/[^ .]+) "
search = re.compile(pat).search

matches = (search(line) for line in file("o10k.ap"))

Block Processing

• Instead of reading line by line we can read
our data in blocks, and process each block.

• Reduces the number of system file calls
that have a large amount of overhead.

• Makes our algorithm amenable to
parallelism by assigning blocks to different
threads.

Block Processing

• One major issue:

We care about where lines end, and they’re
not going to end neatly along block
boundaries. Need to deal with this issue
somehow. Workable and doable, but adds
complexity to our code.

Memory Mapping

• This technique maps the file directly into
memory. This avoids future calls into the
filesystem, leading to better performance.

• After this is done, no need to scan a file to
a particular line, have random access.

• Allows “file access” to be concurrent via
shared memory parallelism. Especially
useful combined with block processing.

A bit of Code
Philosophy

• Tim Bray consistently asks the question “what should programmer have to
do to achieve parallelism/efficient IO?

• If memory mapping is the way to go for file reads, why don’t we do that by
default? (The Multix operating system, for instance, only provided memory
mapping).

• For embarrassingly parallel situations (i.e. for loops where order doesn’t
matter), shouldn’t things be dead simple for the programmer? (Why aren’t
OpenMP style pragmas or something similar more prevalent in parallel
libraries?)

A bit of Code
Philosophy

• Bray points out that most Wide Finder
programmers sought to avoid/ reduce the use of
regular expressions in their solutions. As a strong
proponent of regular expressions, he clearly is
made uncomfortable by this, and points out that
many of the default reg exp engines in languages
have lots of room for optimization. He even argues
that a factor of 2-3 loss in performance may be
worth the sacrifice if it saves the programmer time
due to the simplicity of reg expressions.

Summary

• Since the industry is clearly moving to
“wider” chips (more cores), we need to be
shifting to mindsets that take advantage of
this.

• IO is an important area, and the default
line-by-line reading of a file seems to be
very inefficient.

Summary

• Memory mapping combined with block
processing provides good speedup and
benefits from multiple cores.

• Combining the data at the end of your
calculation is important too - the best way
you do this will likely depend on the
language/parallelism package combination
you choose.

Any Questions?

