
By Tanya Smeltzer

How do you determine how to

structure your team?
 Company needs

Will an outside consult be necessary to meet the

requirements?

 Software development people available

Different levels of skill and experience

 Type of application

 Is this a large or a small application? How many

use cases need to be addressed?

Default Responsibilities

 Shows how project level roles

and responsibilities should be

assigned to a structure of

teams

 Items shown in yellow boxes do not

represent people, rather roles

particular teams can fill

 Size and nature of project will affect

how roles are distributed

 More specific decisions on

team structures should be

guided by some important rules

Suggested organization by UPEDU, as discussed

in Software Project Management: A Unified

Framework. (Walker Royce 1998)

Rules (1)

 Small teams typically better (but not too

small)

More productive

Mythical Man Month

Remember, adding more people adds more

paths of communication

 Team size in large projects must be balanced

against the amount of cross-team interaction to

avoid too many communication paths

Rules (2)

 Avoid deep hierarchies

Can lead to longer decision making

Require more approval from above

Delays cut into development time

Compromises communication

 Too many levels to communicate decisions and

ideas to

 Individuals high in the hierarchy may lack the

knowledge necessary to make the correct

decision

Rules (3)

 The span of control of any manager or

team lead should be limited to 5-9 people

Fewer paths of communication

All ideas/input more likely to be heard

Progress easier to track

Rules (4)

 Team structure should be driven by the

software architecture (not vice versa)

Good architecture allows teams to work more

effectively in parallel (high cohesion and low

coupling between subsystems)

Assigning team members to work on different

parts of an application without first knowing

how they are related can produce unexpected

delays or, worse, software that does not meet

the requirements

Rules (5)

 Testing should ideally be performed by a

team separate from the development

team

Other users are more likely to encounter bugs

from incorrect use of the software

Unit testing should still be performed by the

development team

May not make economic sense in a very small

project

Rules (6)

 Authorities and responsibilities must be

clearly defined.

Managers and team leads in the middle should

understand their required role in balancing

technical and managerial activities.

Do the development teams have the authority

to change the underlying structure without

further approval? How will this affect other

components of the application?

Rules (7)

 Experience and capabilities are important

in assigning responsibilities

Teams should be structured for competence in

the responsibilities they are assigned

A good designer is not necessarily a good

developer! If a team is responsible for both,

ensure they can do both well.

Rules (8)

 Team structures should not be rigid

 Individuals will move between teams over the

project's lifetime

Team responsibilities will change with the

project emphasis from one phase to the next

phase

This is arguably a bad idea (but more on that

later)

Let’s take a closer look…

So far we’ve been looking at the structure of

multiple teams. What about the structure on

an individual team level?

Vertical vs. Horizontal Team Organization

Agile Approach vs. Traditional Organization

Agile Team Roles

Terms

Specialists

 Those who know a lot about a narrow domain

Generalists

 Those who know a little about a wide range of topics

Generalizing Specialists

 Has one or more technical specialties, a general

knowledge of software development and the

business domain in which they work, and actively

seeks to gain new technical and domain area skills in

their existing specialties and in other areas

Vertical Team Organization
 All generalists

 Use cases assigned to individuals or small

groups and implemented end-to-end

 Advantages
 Smooth development on individual use case basis

 Developers gain wide range of skills

 Disadvantages
 Typically requires difficult to find and high-paid consultants

 Typically do not have specific technical expertise required to

quickly solve detailed problems

 May require subject matter experts to work with several

groups of developers

Horizontal Team Organization

 All specialists

 Works on several use cases at once, team

members focusing on specific tasks

 Advantages
 Higher quality of work for each part of the software life cycle

 Users interact with a small group of specialists who

understand their exact needs

 Disadvantages
 Information required by "back-end" people may not be

gathered by the "front-end" people due to the focus on

different specialties

 Difficult to manage (competing priorities)

The Middle Ground

 Both specialists and generalists

 Generalists focus on single use cases

throughout development; specialists work on

tasks of various use cases

 Advantages
 Outside groups interact with a small group of experts

 Specialists can still focus on their areas of expertise

 Individual use cases are implemented consistently

 Disadvantages

Difficult to manage

Generalists are difficult to find

The Agile Approach

So what does the agile approach aim to do

differently from the traditional approach?

Form teams mostly of generalizing specialists
Accomplish a wide range of tasks with consistency

Form teams with all skills necessary
No need to hire outside experts

Keep teams stable
Don’t move people from one team to another for different

iterations

Consistency is important for progress

Agile Roles
 Team coach

 Responsible for facilitating the team, obtaining resources, and protecting

team from problems.

 Developer

 Responsible for the application creation and delivery. This includes

modeling, programming, testing, and release activities.

 Product owner

 Represents the stakeholders. Responsible for taking care of the prioritized

stack of requirements (or product backlog), making decisions in a timely

manner, and for providing information in a timely manner.

Farewell to Traditional Roles

Through use of the agile approach, the

traditional need for project managers and

business analysts is removed

 Leadership activities of project managers are taken on

by the team coach

 Many technical skills previously performed by project

managers are taken on by the team through self

organization

 The role of business analysts is replaced by the skills of

the product owner

Agile Roles (II)

 Stakeholder

 Anyone who is potentially affected by the development and/or

deployment of a software project.

 Independent tester (optional)

 Member of a separate team which works in parallel to the development

team and validates their work throughout the lifecycle.

 Technical experts

 Sometimes brought in on a temporary basis to help the team with a difficult

problem and to transfer their skills to one or more developers on the team.

 Domain experts

 Sometimes brought in to work with the team by explaining domain specific

details of a requirement

What about larger projects?

 Multiple teams, or sub-teams, are created to focus on

one or more sub-systems of the overall application

 These teams consist of the same roles as smaller

agile teams, as well as a couple of additional roles

 Three coordinating teams are created

 Composed of product owners, team coaches, and

architecture owners from the sub-teams

 Coordinate project management, technical and architectural

issues, requirement and product ownership issues, and

system integration

The Additional Roles

Architecture owner

Responsible for facilitating architectural decisions on a sub-

team

Do not have sole responsibility of creating the architecture

Part of the architecture owner team (responsible for overall

architectural direction of the project)

Integrator

Responsible for building the entire system from its subsystems

Can be one or more people in this role

So what does this look like?

Copyright 2005-2009, Scott Ambler

As integrators, independent

testers, and technical and

domain experts are not part

of the main teams, they are

not shown here.

Questions?

Resources

Unified Process for Education (UPEDU). http://www.yoopeedoo.org/upedu/

Scott Ambler, “Web services programming tips and tricks: How to organize a software

development team,” November 2000. [Online]

http://www.ibm.com/developerworks/webservices/library/ws-tip-team.html

R. Srinivasan, “Well-defined hierarchy speeds up decision making,” May 2002.

http://www.icmgworld.com/corp/news/Articles/RS/may_0202.asp

Scott Ambler, “Roles on Agile Teams: From Small to Large Teams,” 2005-2009.

http://www.ambysoft.com/essays/agileRoles.html

http://www.yoopeedoo.org/upedu/
http://www.ibm.com/developerworks/webservices/library/ws-tip-team.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-team.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-team.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-team.html
http://www.ibm.com/developerworks/webservices/library/ws-tip-team.html
http://www.icmgworld.com/corp/news/Articles/RS/may_0202.asp
http://www.ambysoft.com/essays/agileRoles.html

