
Software Abstractions
By

Isaac Yoshino
Sahar Jambi

CSCI 5828 – Software Engineering
Spring 2010

Introduction

  Software development is difficult.
  Choosing correct abstractions to base your design

around is a tricky process.
  Simple and robust designs can turn out to be

incoherent and even inconsistent when you come
to implement them.

Abstraction

  Software is built on abstractions.
  Abstraction is a way of hiding details in order to

make it easier to see the big picture model.
  Good abstraction will generalize that which can be

made abstract while allowing specificity where
abstraction doesn't work.

  Abstraction programming is the process of
identifying common patterns that have systematic
variations.

Formal Specification

  An approach to attack the design of abstraction.
  Describes what the system should do.
  Uses of notations for ease of expression and

exploration.
  These notations are precise, expressive, and

unambiguous.
  Given a specification, it is possible to use formal

verification techniques to demonstrate that a
candidate system design is correct.

Alloy

  A language and software modeling approach.
  Based on formal specification with features for

fully automated analysis.
  Designed by the Software Design Group at MIT

lead by Professor Daniel Jackson in 1997.

Why Alloy?

  The ability for incremental analysis.
  High performance and scalability.
  Applied to many fields including scheduling,

cryptography and instant messaging.

Alloy: Main Features

  Alloy is a lightweight modelling language for
software design.

  It is amenable to a fully automatic analysis.
  Using the Alloy Analyzer, it provides a visualizer

for making sense of solutions and
counterexamples it finds.

  The key elements of the approach are: logic,
language, and analysis.

Alloy: Key Elements

  Alloy = logic + language + analysis
  logic
 first order logic + relational calculus

  language
 syntax for structuring specifications in the logic
  analysis
 bounded exhaustive search for counterexample to a

claimed property using SAT

Logic

  The logic provides the building blocks of the
language.
-  Structures are represented as relations.
-  Structural properties are expressed with a few

simple and powerful operators.
-  States and conditions are described using formulas

called constraints

Logic: relations of atoms

  Atoms are Alloy's primitive entities
-  indivisible, immutable, uninterpreted

  Relations associate atoms with one another
-  set of tuples, tuples are sequences of atoms

  Every value in Alloy logic is a relation!
-  relations, sets, scalars all the same thing

Language

  The language adds a small amount of syntax to
the logic for structuring descriptions.

  Supports classification and incremental
refinement with a flexible type system.

Analysis

  The analysis brings software abstractions to life.
  A form of constraint solving.

-  Simulation involves finding instances of states that
satisfy a given property.

-  Checking involves finding a counterexample-an
instance that violates a given property

-  The search for instances is specified by a scope.

Example: Hotel Room Locking

  Most hotels now issue disposable room keys.
  All rooms have recodable locks.
  A new key is issued to a new occupant which

recodes the lock so the previous keys will no
longer work.

Example: Hotel Room Locking

  To represent the key generators:
-  Declare signatures for the keys and time instants:
sig Key {}
sig Time {}

-  A signature defines the vocabulary for the model.
-  When you declare a signature, you are defining an

atom.

Example: Hotel Room Locking

  To represent the key generators:
-  Each room has a set of keys, a current key at a

given time:
sig Room {
 keys: set Key,
 currentKey: keys one -> Time
 }

Example: Hotel Room Locking

  To represent the key generators:
-  No key belongs to more than one room lock:
fact DisjointKeySets{
 Room <: keys : Room lone -> Key
 }

Example: Hotel Room Locking

  To represent the key generators:
-  The front desk is a singleton signature, that groups

two relations:
  Lastkey maps a room to the last key, and
  Occupant maps a room to the guest.

one sig FrontDesk {
 lastKey: (Room -> lone Key) -> Time,
 occupant: (Room -> Guest) -> Time
 }

Example: Hotel Room Locking

  To represent the key generators:
-  A guest holds a set of keys at a given time:
sig Guest {
 keys: Key -> Time
 }

Example: Hotel Room Locking

  To generate the successor key:
fun nextKey (k: Key, ks: set Key): set Key {
 min [k.nexts & ks]
 }

Example: Hotel Room Locking

  The model diagram of the declaration:

Room

Guest

Key

currentKey.<Time>!

<FrontDesk>.lastKey.<Time> ?

? keys

keys.<Time>

<FrontDesk>.occupant.<Time>

Example: Hotel Room Locking

  Hotel Operations:
-  In the initial state, no guests hold keys

pred init [t: Time] {
 no Guest.keys.t
 no FrontDesk.occupant.t
 all r: Room | FrontDesk.lastKey.t [r] =

r.currentKey.t
 }

Example: Hotel Room Locking
  Hotel Operations:

-  Checking out requires that the room be occupied by
the guest.

pred checkout [t, t': Time, g: Guest] {
 let occ = FrontDesk.occupant {
 some occ.t.g
 occ.t' = occ.t - Room ->g }
 FrontDesk.lastKey.t = FrontDesk.lastKey.t'
 noRoomChangeExcept [t, t', none]
 noGuestChangeExcept [t, t', none] }

Example: Hotel Room Locking
  Hotel Operations:

-  Checking in requires that the room have no current
occupant.

pred checkin [t, t': Time, g: Guest, r: Room, k: Key] {
 g.keys.t' = g.keys.t + k
 let occ = FrontDesk.occupant {
 no occ.t [r]
 occ.t' = occ.t + r -> g}
 let lk = FrontDesk.lastKey {
 lk.t' = lk.t ++ r -> k
 k = nextKey [lk.t [r], r.keys}
 noRoomChangeExcept [t, t', none]
 noGuestChangeExcept [t, t', g]}

Example: Hotel Room Locking

  Analysis:
-  Check that no unauthorized entries can occur.
assert NoBadEntry {
 all t: Time, r: Room, g: Guest, k: Key |
 let t' = t.next, o = FrontDesk.occupant.t[r] |
 entry [t, t', g, r, k] and some o => g in o
 }

Alloy Editor

Alloy Analyzer

Alloy Analyzer

Conclusion

  The Alloy language provides an automated and
visual interface for formal specification.

  Alloy is a relation based modelling notation.
  It’s syntax and semantics is easy.
  The automatic analysis is a great aid for

developers.

Reference

  Jackson, Daniel (2006). Software Abstractions:
Logic, Language, and Analysis. MIT Press. ISBN
978-0-262-10114-1.

