Software Abstractions

By
Isaac Yoshino
Sahar Jambi

CSCI 5828 — Software Engineering
Spring 2010

Introduction

o Software development is difficult.

« Choosing correct abstractions to base your design
around 1s a tricky process.

« Simple and robust designs can turn out to be
incoherent and even inconsistent when you come
to implement them.

Abstraction

Software 1s built on abstractions.

Abstraction is a way of hiding details in order to
make 1t easier to see the big picture model.

Good abstraction will generalize that which can be
made abstract while allowing specificity where
abstraction doesn't work.

Abstraction programming 1s the process of
1dentifying common patterns that have systematic
variations.

Formal Specification

An approach to attack the design of abstraction.
Describes what the system should do.

Uses of notations for ease of expression and
exploration.

These notations are precise, expressive, and
unambiguous.

Given a specification, it 1s possible to use formal
verification techniques to demonstrate that a
candidate system design 1s correct.

Alloy

« A language and software modeling approach.

« Based on formal specification with features for
fully automated analysis.

o Designed by the Software Design Group at MIT
lead by Professor Daniel Jackson in 1997.

Why Alloy?

« The ability for incremental analysis.

« High performance and scalability.

o Applied to many fields including scheduling,
cryptography and instant messaging.

Alloy: Main Features

Alloy 1s a lightweight modelling language for
software design.

It 1s amenable to a fully automatic analysis.

Using the Alloy Analyzer, it provides a visualizer
for making sense of solutions and
counterexamples 1t finds.

The key elements of the approach are: logic,
language, and analysis.

Alloy: Key Elements

Alloy = logic + language + analysis

logic

first order logic + relational calculus

language
syntax for structuring specifications in the logic

analysis

bounded exhaustive search for counterexample to a
claimed property using SAT

Logic

« The logic provides the building blocks of the
language.

Structures are represented as relations.

Structural properties are expressed with a few
simple and powerful operators.

- States and conditions are described using formulas
called constraints

Logic: relations of atoms

« Atoms are Alloy's primitive entities
indivisible, immutable, uninterpreted

« Relations associate atoms with one another
set of tuples, tuples are sequences of atoms

« Every value in Alloy logic 1s a relation!

relations, sets, scalars all the same thing

Language

« The language adds a small amount of syntax to
the logic for structuring descriptions.

« Supports classification and incremental
refinement with a flexible type system.

Analysis

« The analysis brings software abstractions to life.

o A form of constraint solving.

Simulation involves finding instances of states that
satisfy a given property.

- Checking involves finding a counterexample-an
instance that violates a given property

- The search for instances 1s specified by a scope.

Example: Hotel Room Locking

« Most hotels now 1ssue disposable room keys.

o All rooms have recodable locks.

o A new key is 1ssued to a new occupant which
recodes the lock so the previous keys will no
longer work.

Example: Hotel Room Locking

« To represent the key generators:

Declare signatures for the keys and time instants:

sig Key {}
sig Time {}

A signature defines the vocabulary for the model.

When you declare a signature, you are defining an
atom.

Example: Hotel Room Locking

« To represent the key generators:

Each room has a set of keys, a current key at a
given time:

sig Room {

keys: set Key,

currentKey: keys one -> Time

)

Example: Hotel Room Locking

« To represent the key generators:

No key belongs to more than one room lock:
fact DisjointKeySets {

Room <: keys : Room lone -> Key

h

Example: Hotel Room Locking

To represent the key generators:

- The front desk 1s a singleton signature, that groups
two relations:
o Lastkey maps a room to the last key, and
o Occupant maps a room to the guest.
one sig FrontDesk {

lastKey: (Room -> lone Key) -> Time,

occupant: (Room -> Guest) -> Time

h

Example: Hotel Room Locking

« To represent the key generators:

A guest holds a set of keys at a given time:

sig Guest {

keys: Key -> Time
)

Example: Hotel Room Locking

« To generate the successor key:

fun nextKey (k: Key, ks: set Key): set Key {
min [K.nexts & ks]

;

Example: Hotel Room Locking

o The model diagram of the declaration:

currentKey.<Time>!

? keys

»
>

Room Key

>

<FrontDesk>.lastKey.<Time> ?

keys.<Time>

<FrontDesk>.occupant.<Time> Guest

\4

Example: Hotel Room Locking

« Hotel Operations:

In the 1nitial state, no guests hold keys
pred init [t: Time] {
no Guest.keys.t
no FrontDesk.occupant.t

all r: Room | FrontDesk.lastKey.t [r] =
r.currentKey.t

)

Example: Hotel Room Locking

Hotel Operations:

- Checking out requires that the room be occupied by
the guest.

pred checkout [t, t": Time, g: Guest] {
let occ = FrontDesk.occupant {
some occ.t.g
occ.t' = occ.t - Room ->g }
FrontDesk.lastKey.t = FrontDesk.lastKey.t'
noRoomChangeExcept [t, t', none]
noGuestChangeExcept [t, t', none] }

Example: Hotel Room Locking

« Hotel Operations:

- Checking in requires that the room have no current
occupant.

pred checkin [t, t': Time, g: Guest, r: Room, k: Key] {

g keys.t'= g.keys.t +k

let occ = FrontDesk.occupant {
no occ.t [r]
occ.t' =occ.t+r->g!

let Ik = FrontDesk.lastKey {
lkt'=lkt++r->k
k = nextKey [lk.t [r], r.keys}
noRoomChangeExcept [t, t', none]
noGuestChangeExcept [t, t', g]}

Example: Hotel Room Locking

o Analysis:

- Check that no unauthorized entries can occur.
assert NoBadEntry {
all t: Time, r: Room, g: Guest, k: Key |

let t' = t.next, o = FrontDesk.occupant.t[r] |

entry [t, t', g, r, k] and some 0 => g in o

Alloy Editor

File Edit Execute Options Window Help

g @y 4

New Open Reload Save Execute Show

module chapter§/hotel4 --- model in Fig 6. 10 with the Nonlntervening fact

open util/ordering[Time] as to
open util/ordering[Key] as ko

sig Key, Time {

sig Room {
keys: set Key|
currentkKey: keys one - > Time
1

fact {
Room <: keys in Room lone - > Key
1

one sig FrontDesk {
lastkey: (Room - > lone Key) - > Time,
occupant: (Room - > Guest) - > Time

}

sig Guest {
keys: Key - > Time
1

fun nextKey [k: Key, ks: set Key]: set Key {
min [k.nexts & ks]
1

pred init [t: Time] {

Line 9, Column 16

L4]

‘|/Alloy Analyzer 4.1.10 (build date: 2009/03/19 02:02 EDT)

Warning: Alloy4 defaults to SAT4) since it is pure Java and very reliable.
For faster performance, go to Options menu and try another solver like MiniSat.

» If these native solvers fail on your computer, remember to change back to SAT4).

Alloy Analyzer

|Alloy Analyzer 4.1.10 (build date: 2009/03/19 02:02 EDT)

:Warning: Alloy4 defaults to SAT4]) since it is pure Java and very reliable.
: For faster performance, go to Options menu and try another solver like MiniSat.
{|If these native solvers fail on your computer, remember to change back to SAT4).

|

Executing "Check NoBadEntry for 5 but 3 Room, 3 Guest, 9 Time, 8 Event”
| Solver=sat4j Bitwidth=4 MaxSeq=5 SkolemDepth=1 Symmetry=20

25769 vars. 843 primary vars. 67964 clauses. 2196ms.

No counterexample found. Assertion may be valid. 37265ms.

[

|Executing "Check NoBadEntry for S but 3 Room, 3 Guest, 9 Time, 8 Event”
2 Solver=sat4j Bitwidth=4 MaxSeq=5 SkolemDepth=1 Symmetry=20

25769 vars. 843 primary vars. 67964 clauses. 1273ms.

No counterexample found. Assertion may be valid. 36960ms.

|Executing "Check NoBadEntry for 3 but 2 Room, 2 Guest, 5 Time”
Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20
3581 vars. 167 primary vars. 6178 clauses. 297ms.

No counterexample found. Assertion may be valid. 62ms.

: Executing "Check NoBadEntry for 3 but 2 Room, 2 Guest, S Time"”
Solver=sat4j Bitwidth=4 MaxSeq=3 SkolemDepth=1 Symmetry=20
2848 vars. 167 primary vars. 5159 clauses. 23 1ms.
Counterexample found. Assertion is invalid. 106ms.

Alloy Analyzer

File Instance Theme Window

A=

= Gos i~
S EE a Projection: none
Next

Viz Dot XML Tree Theme Magic Layout E

JadEntry_g: 4
oBadEntry_k: 4
$NoBadEntry_r: 4
currentKey: 5 lastiey [Ryam, Key0]

FrontDesk

keys: 3
keys: 6
lastKey: 5
occupant: 3

|astikKey [Room,
astkepk [Room, Keyl]
\ upant [Room, Guest0]

Guest0
($NoBadEntry_g")

lastKey\[Room, Key:

occup

$NpBadEntry_g $NoBadEntry_g|
! - y-4

keys [Keyl]

lastiley [Room, Key2]

occupant [Room, Guestl]

$NoBadEntry_k Guestl

currentke:
3 \err‘ r |$NpBadEntry_

,':un"er'n‘ ey [\‘e.rl

Time3 \\ L
($NoBadEntry_t) IJwaBa-§§|1ttj .k /
'IIJw:fBa-\j ﬁtr\.‘kl([

Conclusion

The Alloy language provides an automated and
visual interface for formal specification.

Alloy 1s a relation based modelling notation.

It’s syntax and semantics 1s easy.

The automatic analysis 1s a great aid for
developers.

Reference

« Jackson, Daniel (2006). Software Abstractions:

Logic, Language, and Analysis. MIT Press. ISBN
978-0-262-10114-1. ..

