
Spring Framework 3.0 MVC
Aaron Schram

Me

University of Colorado PhD Student

Software Engineering
Previously employment

Mocapay, Inc (mobile payments)
Rally Software (agile tooling)
BEA (Weblogic Portal)
Lockheed Martin

What's Spring MVC?

A model-view-controller framework for Java
web application
Made to simplify the writing and testing of
Java web applications
Fully integrates with the Spring dependency
injection (Inversion of Control) framework
Open Source
Developed and maintained by Interface21,
recently purchased by VMWare

Project Goals
J2EE should be easier to use
It is best to program to interfaces, rather than
classes. Spring reduces the complexity cost of using
interfaces to zero.
JavaBeans offer a great way of configuring
applications.
OO design is more important than any
implementation technology, such as J2EE.
Checked exceptions are overused in Java. A platform
shouldn't force you to catch exceptions you're
unlikely to be able to recover from.
Testability is essential, and a platform such as Spring
should help make your code easier to test.

Why Use Spring MVC?
For most purposes you only have to define one
Servlet in web.xml
Capable of Convention over Configuration

Similar to Ruby on Rails or other popular web
frameworks that work with dynamic languages

Normal business objects can be used to back forms
No need to duplicate objects just to implement an
MVC's command object interface

Very flexible view resolvers
Can by used to map *.json, *.xml, *.atom, etc to
the same logic code in one controller and simply
output the type of data requested

Enforces good Software Engineering principles like
SRP and DRY

Let's Get Started!

Dispatcher Servlet

Used to handle all incoming requests and route
them through Spring
 Uses customizable logic to determine which
controllers should handle which requests
Forwards all responses to through view handlers
to determine the correct views to route responses
to
Exposes all beans defined in Spring to controllers
for dependency injection

Dispatcher Servlet Architecture

Uses the Front Controller Design Pattern

Defining The Dispatcher Servlet

Defining a Dispatcher Servlet named "spring" that will intercept all
urls to this web application

Spring Configuration

By default Spring looks for a servletname -
servlet.xml file in /WEB-INF
For the previous example we would need to
create a file in /WEB-INF named spring-servlet.
xml

spring-servlet.xml

spring-servlet.xml cont.

<mvc:annotation-driven /> tells Spring to support annotations like
@Controller, @RequestMapping and others that simplify the

writing and configuration of controllers

spring-servlet.xml cont.

Define a simple view resolver that looks for JSPs that match a given
view name in the director /WEB-INF/jsp

spring-servlet.xml cont.

Tell Spring where to automatically detect controllers

Configuration Done!
Woo Hoo!

So What's a Controller Look Like?

Example: Classroom Controller

A Controller that gets a class or all the students in the class

Mark this class as a controller

Define what default URLs this class should respond to

Side Note: Autowiring

Autowiring allows Spring to do the instantiation of the class you
want to make use of for you. At run time you will be able to access

all methods of the class without worrying about how you got the
class. This is known as Dependency Injection.

Back To Classroom Example

This method is the default method called when /classroom or / is
hit from a client. It simply forwards to a jsp named classroom.jsp

located in /WEB-INF/jsp

Side Note: Restful URLs

Spring like many other popular frameworks can make use of
RESTful URLs

They come in the style of /users/user_id
Commonly without any extension such as .html

Popularized by Ruby on Rails
 Collections are accessed like:

/users
Individual entries are accessed like:

/users/user_id
CRUD operations are done via HTTP methods

PUT, POST, GET, DELETE

Classroom RESTful URLs

The highlighted section above demonstrates how to accomplish
RESTful URLs in the Spring MVC Framework. Using the

@PathVariable annotation you can gain access to the variable
passed in on the URI. This is commonly referred to as URI

Templating.

What's a Model?

A Model is used in Spring MVC to pass
objects from the controller tier up into the view
A Model is really just a java.util.Map
You can add attributes to a Model and they
will be put on the request as attributes and
available in the applications PageContext .
In Spring you can simply pass back a Map or
one of two Spring specific classes; ModelMap
or Model

ModelMap Example

In the above example we use a service method to read and return
a Classroom object. We make that Classroom object available to
the view under the key "classroom " by calling addAttribute() on

the ModelMap

Getting All Students In A Classroom

Above you can see that how to get all the students in a given
classroom by requesting the URL /classroom/{id} /students. A

Java List<Student> will be available to the classroom.jsp view for
display

More Helpful Information

SpringSource.org Chapter 15
RESTful URLs

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/mvc.html
http://en.wikipedia.org/wiki/Representational_State_Transfer

Aaron Schram
aaron.schram@colorado.edu

