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What is Software Architecture?

It is the structure of the system which
consists of software components, the
externally visible properties of those

components and the relationship between
them.




Features

Every System has its own architecture but they are
not identical.

Software architecture and its description are
different.

The different stakeholders are

1. Users of the System

2. Acquirers of the System

3. Developers of the System

4. Maintainers of the System
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Views Used in Software Architecture

Software architecture is organised in views which are
analogous different types of blueprints made in building
architecture.

Different views are:
Component and Connect
Decomposition view.
Allocation view
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Decomposition View
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Architectural Styles

Pipes & Filters
Client- Server
Event Driven
Hierarchical Layer
Data Sharing
Object Oriented




Pipes & Filters

Very Simple yet powerful and robust architecture.
Examples:

1. Unix Programs
2. Compilers
Components

1. Pipe

2. Filter

3. Pump

4. Sink
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Client Server Style
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Distributed Application Architecture that
partitions the tasks into service providers and
service requesters




Advantages

Roles and responsibilities of computing systems to be
distributed among independent computers known to each
other only through the network.

All the data is stored in the server which have better
security controls.

Caters to multiple different clients with different
capabilities.

Data updates are easier and faster as Data is
centralized.




Disadvantages

As the number of client requests increases the server

becomes overloaded
Client - Server Architecture lacks the robustness of
Peer to Peer Architecture.

Lets look at this architecture
implementation in ACME...




System simple cs = {
Component client — {

Port send-request;

Properties ( Aesop-style . style-id = client-server;
UniCon-style : style-id = cs;
source-code:external = "CODE-LIB/client.c")}

Component server = {

Port receive-request;

Properties { idempotence : boolean = ture;
max-concurrent-clients ;. integer = |;
source-code;external = "CODE-LIB/server.c"}}

Connector rpc = {

Roles {caller,callee}

Properties { synchronous . boolean =true
max-roles ; integer = 2;
protocol ; Wright = " "}

Attachments {
client. send-request to rpc.caller;
server. receive-request to rpc.callee}




Event-Driven Architecture

Architecture pattern that promotes production,
detection, consumption of and reaction to events.

It consists of event emitters and event consumers.
Sinks have the responsibility of applying a reaction as
soon as the event is presented.

Systems have certain goal under the control of
some message mechanism and the subsystem
collaborates with each other to achieve system's
ultimate goal.
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Hierarchical Layer

It is a layered architecture.

Each layer has 2 roles:

1. Provide services for the upper layers.
2. Call lower layers functions.
Conceptual layer system model:




Advantages of Layering

Supports gradual abstraction in the system design
process.

Layer system has good extendability.

Layer style supports software reuse.




The Seven Layers of OSI
 Application Layer

Presentation Layer
Session Layer
Transport Layer
Network Layer

Example of a layered architecture: ISO/OSI
network 7- layer architecture




Data Sharing

Also called repository style.
System has 2 components:

1. Central data unit component.
2. Set of relatively dependent components.

Central data unit called the repository shares
information with all the other units.
There are differences in the information exchange

patterns.
Thus there are 2 main control stratergies to deal with

these information exchange patterns.




Central data unit

Black-board type repository model

The components:
ks-knowledge sources,
Central Data Unit,
Control Unit.
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Object Oriented

The key features are:

Data Abstraction.

Modularization.

Information encapsulation.

Inheritance.

Polymorphism.
Objects in the problem are first recognized, then proper
classes are constructed to represent these objects.
Java - Object Oriented Programming, C - Procedural
programming.
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Example of Object Oriented Architecture:
Described using a UML diagram.




Architecture Description Languages

Computer language used to describe the software

architecture.

Shaw and Garland's description for ADL's includes-
1. Components.

2. Operators.

3. Patterns.

4. Closure.

. Specification.

Different ADL's existing: ACME, AADL, Darwin,

WRIGHT.




What makes a language an ADL?

Be suitable for communicating an architecture to all the
stake holders.

Support the tasks of architecture creation, refinement
and validation.

Provide the ability to represent most common
architectural styles.

Support analytical capabilities.

Provide quick generating prototype implementations.




Darwin

Declarative Language.

Describes the organization of software in terms of
components, their interfaces and their binding components
between them.

Provides general purpose notations for specifying the structure
of the system.

Focuses on specification of distributed software system.
Supports the specifications of dynamic structures.
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Component Server{
provide p;

}

Component Client{
require r;

\

Component System(
inst

A. Client B.Server
bind

. —-B.p

}

Client Server System in Darwin




filter
| input output

Component filter(
provide output<Ustream char > ;

require input< stream char’>;
}

Filter Component in Darwin




Conclusion-I

Common attribute in all the architectural slides -
extendibility.
Good software - closed for change, open for extension.
Each style has its good quality attributes at the cost of
sacrificing other quality attributes.
Pipes and filters style has bad interactivity while
event driven style has good support for user
interactivity.
In event driven style its hard to share common data,
while repositories has advantage of data sharing.




Conclusion-IT

Maximum benefit of software architectural styles can
be achieved by the integration of different styles.
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