Software Architecture

Data Vault Dashboard
SQL Server & Database

Primary Server y
Database Management /O\
Centralized Monitoring <
>
S—
o 4

g7

Tapestry 5

components

repository

Control Center

post-processing
 interldap-core

P eschema Idap facade

Nityashree Tumkur
Samyukta Mudugal

What is Software Architecture?

It is the structure of the system which
consists of software components, the
externally visible properties of those

components and the relationship between
them.

Features

Every System has its own architecture but they are
not identical.

Software architecture and its description are
different.

The different stakeholders are

1. Users of the System

2. Acquirers of the System

3. Developers of the System

4. Maintainers of the System

System
Design

e

Requirements :
Analysis

Acquirement
&
Evaluation
Software Life Cycle ‘

|

\

Svystem
Maintenance

Implementation

System
Test

Architecture Centered Life Cycle

Views Used in Software Architecture

Software architecture is organised in views which are
analogous different types of blueprints made in building
architecture.

Different views are:
Component and Connect
Decomposition view.
Allocation view

Component - Connector View

Component1

Interfaces

Component2

Decomposition View

From Computer Desktop Encyclopedia
@ 1998 The Computer Language Co. Inc.

MAIN

|
Edit File Options
|menu | Imenu | |menu |
I
I New | IOpen | | Save |

Allocation N

MainFrame

View L
N aN A

BasicCale dll AdvCale dll Statistics dll

Add Log Average o E
Substract Factorial N Ance Tmit.ani SkyBlue skn | | DeepRed skn Calc.ico

Multiply Triangle Sum

ImPIemenTaTion
view

)i]

S

Mail Chient Database¢|Manager

Internct

\Iull;cr\;-r ApLERa. DeploymenT Vlew
% . Network Database

Mail Client Communication — Access

Architectural Styles

Pipes & Filters
Client- Server
Event Driven
Hierarchical Layer
Data Sharing
Object Oriented

Pipes & Filters

Very Simple yet powerful and robust architecture.
Examples:

1. Unix Programs
2. Compilers
Components

1. Pipe

2. Filter

3. Pump

4. Sink

1 i

-

Pipes & Filters Style

Filter

Filter i Filter

Recursive Technique

@ P Filter be Filter Pibe @
@ Pi : Pibe
=
be

Pi
Pibe
Pi

pbe
= Filter Filter @
.IDe . I I

Relationship between different filter
processes.

Analog BaseBand

P . e 4 - R ACORD XML with
proprietary extensions

Conversion

Internal XML

Jurisdiction-specific

nrichmen
EINIChient documents and forms

Internal XML

Web Application (e -_
Generation

HTMU/PDF

Svstem Simple PipeFilter
| i

T[urcep %
Splitter I /t MergeAndSort
7

MorgeAndSort

oo} o}

4

Another Example

Client Server Style

1 Client sends a

Y ‘ l "- £ '. " (s
request to the EEp L NR
Server

Database sends back Server querries
Server sends the required data the Database

(-rk 4 back the
r:‘ -?" - requested HTML —
- -
page

- -
Client Machine —

Database .
technicalcommunicationcenter,com

Distributed Application Architecture that
partitions the tasks into service providers and
service requesters

Advantages

Roles and responsibilities of computing systems to be
distributed among independent computers known to each
other only through the network.

All the data is stored in the server which have better
security controls.

Caters to multiple different clients with different
capabilities.

Data updates are easier and faster as Data is
centralized.

Disadvantages

As the number of client requests increases the server

becomes overloaded
Client - Server Architecture lacks the robustness of
Peer to Peer Architecture.

Lets look at this architecture
implementation in ACME...

System simple cs = {
Component client — {

Port send-request;

Properties (Aesop-style . style-id = client-server;
UniCon-style : style-id = cs;
source-code:external = "CODE-LIB/client.c")}

Component server = {

Port receive-request;

Properties { idempotence : boolean = ture;
max-concurrent-clients ;. integer = |;
source-code;external = "CODE-LIB/server.c"}}

Connector rpc = {

Roles {caller,callee}

Properties { synchronous . boolean =true
max-roles ; integer = 2;
protocol ; Wright = " "}

Attachments {
client. send-request to rpc.caller;
server. receive-request to rpc.callee}

Event-Driven Architecture

Architecture pattern that promotes production,
detection, consumption of and reaction to events.

It consists of event emitters and event consumers.
Sinks have the responsibility of applying a reaction as
soon as the event is presented.

Systems have certain goal under the control of
some message mechanism and the subsystem
collaborates with each other to achieve system's
ultimate goal.

Event generator Event Channel Event Processing Engine Downstream activity

Lvent Procesang

Event - Driven Architecture

Hierarchical Layer

It is a layered architecture.

Each layer has 2 roles:

1. Provide services for the upper layers.
2. Call lower layers functions.
Conceptual layer system model:

Advantages of Layering

Supports gradual abstraction in the system design
process.

Layer system has good extendability.

Layer style supports software reuse.

The Seven Layers of OSI
 Application Layer

Presentation Layer
Session Layer
Transport Layer
Network Layer

Example of a layered architecture: ISO/OSI
network 7- layer architecture

Data Sharing

Also called repository style.
System has 2 components:

1. Central data unit component.
2. Set of relatively dependent components.

Central data unit called the repository shares
information with all the other units.
There are differences in the information exchange

patterns.
Thus there are 2 main control stratergies to deal with

these information exchange patterns.

Central data unit

Black-board type repository model

The components:
ks-knowledge sources,
Central Data Unit,
Control Unit.

Field expert

Man-machine interface

A

1

Interpret

Reason
machine

Knowledge acquisition
structure

structure

!

!

T
:

Database and its
Management system

P

Knowledge base and 1ts
Management system

Example: Expert system

Object Oriented

The key features are:

Data Abstraction.

Modularization.

Information encapsulation.

Inheritance.

Polymorphism.
Objects in the problem are first recognized, then proper
classes are constructed to represent these objects.
Java - Object Oriented Programming, C - Procedural
programming.

Component

opi()

op2()

op3()
addComponent()
removeComponent()

getEnumeration()
\ glements

SimpleComponent CompositeComponent

opi() opi()

0p2() op2()
addComponent()
removeComponent()
getEnumeration()

Example of Object Oriented Architecture:
Described using a UML diagram.

Architecture Description Languages

Computer language used to describe the software

architecture.

Shaw and Garland's description for ADL's includes-
1. Components.

2. Operators.

3. Patterns.

4. Closure.

. Specification.

Different ADL's existing: ACME, AADL, Darwin,

WRIGHT.

What makes a language an ADL?

Be suitable for communicating an architecture to all the
stake holders.

Support the tasks of architecture creation, refinement
and validation.

Provide the ability to represent most common
architectural styles.

Support analytical capabilities.

Provide quick generating prototype implementations.

Darwin

Declarative Language.

Describes the organization of software in terms of
components, their interfaces and their binding components
between them.

Provides general purpose notations for specifying the structure
of the system.

Focuses on specification of distributed software system.
Supports the specifications of dynamic structures.

TCDAY BEWNE CRARLES DARMING

BIRTHDAY, LETS BEGIN CLASS

WITH A MOAMENT Of SILENT
EVOLVING. e

Component Server{
provide p;

}

Component Client{
require r;

\

Component System(
inst

A. Client B.Server
bind

. —-B.p

}

Client Server System in Darwin

filter
| input output

Component filter(
provide output<Ustream char > ;

require input< stream char’>;
}

Filter Component in Darwin

Conclusion-I

Common attribute in all the architectural slides -
extendibility.
Good software - closed for change, open for extension.
Each style has its good quality attributes at the cost of
sacrificing other quality attributes.
Pipes and filters style has bad interactivity while
event driven style has good support for user
interactivity.
In event driven style its hard to share common data,
while repositories has advantage of data sharing.

Conclusion-IT

Maximum benefit of software architectural styles can
be achieved by the integration of different styles.

Event-driven

{————(nmm.m\l———l

Act
B ()hSCI’\'CD“ \'l:lc':(c\

A imtcrpreter

getrevent

Event queue State parameters

like which level
Interprering 1s in

lLayered

svsiem

l’lpc\.nl\lhltclxl Pipes and filters A

cN \:IH\—‘I v

Datanced Interpreter
— to be (rules and preted data—
interpreted tables)

|
Y

Flow control Carread
explicit invocanon Interpreting data

Service provided
objects

A

repository

kcpusllur‘\

References

Software Architecture - Zheng Qin, Jiankuan Xing,
Xiang Zheng.

Garfixia Software Architecture - Patrick Van Bergen.
Art of Software Architecture: Design methods and
Techniques - S.T. Albin.

