
SOFTWARE SECURITY

Put together by –

Meenakshi Mani

Tanvi Shah

WHAT IS SOFTWARE SECURITY

  Its all about building secure software !

 The process of designing, building, and testing
software for security

 Taking the pro-active approach : building
security INTO the software as opposed to
securing it after building it.

SOFTWARE SECURITY ≠ SECURITY SOFTWARE !!

JUST TO CLARIFY ..

WHY GO IN FOR SOFTWARE SECURITY(1)

 Good, secure software is the need of the day.

 Reduction in the expenses incurred in “Fixing
bugs” in a software.

 Market value – if your software isn’t secure, it is
not going to stay in the market

WHY GO IN FOR SOFTWARE SECURITY(2)

REASONS FOR INSECURE SOFTWARE

  Reliance on networked devices

 Growing internet connectivity makes it easier for
hackers

  Easily extensible systems

 Extensions increase scope for software
vulnerabilities

  Increasing complexity of the software needed to
be built

 Windows XP had 40 million lines of code!!

WHAT CAN WE DO ?

 Be pro-active in building security into the
software from ground-up

  Important to include security into every phase
of the Software Development life cycle.

 WHY ?

 Software security is a system-wide issue that involves
both building in security mechanisms and designing
the system to be robust.

 You can’t spray paint security features onto a design
and expect it to become secure.

 Most approaches in practice today involve securing the
software AFTER its been built.

 Not the best approach , and certainly not effective
enough as has been proved (we still have issues with
our software being meddled with by hackers don’t we!)

BUILDING SECURITY IN(1)

BUILDING SECURITY IN(2)

 Security requirements ; deal with “abuse cases”-
how the system will react under attack and inject
requirements which will address that

 Take into account the various security principles
while charting out the basic design or
architecture

 Risk analysis to identify the risks. Will include
external review

BUILDING SECURITY IN(3)

 At the code level , make use of static analysis
tools – tools that can search code for common
vulnerabilities (like buffer overflow)

 Security testing must involve two strategies :

 - Testing security functionality with
 standard test techniques

 - Risk-based security testing based on attack
 patterns and models

BUILDING SECURITY IN(4)

 Penetration testing

 Good to understand the behavior of your
 software in a real-time environment

 Security breaks

 Observe and study them . Recycling knowledge
 from attacks and exploits back into the
 organization.

SECURITY DESIGN PRINCIPLES -YES !! WE
HAVE PRINCIPLES TO GO BY ! =)

  10 principles which go by the “90/10” rule

 Avoid 90% of the potential problems by following 10
simple rules !

PRINCIPLE#1:SECURE THE WEAKEST LINK

 Your system is as secure as its weakest link

 Secure all parts of your system from bottom-up

 All the cryptography in the world will not help if
there is an exploitable buffer overflow in the
software

PRINCIPLE#1(CONT.)

 Perform Risk analysis iteratively and keep
identifying potential risk areas and fixing them

  Stop iterating at some point when it feels that
all components are within an acceptable risk
threshold.

PRINCIPLE#2:DEFENSE IN DEPTH

 Manage risk with multiple layers of defensive
strategies.

  If the error is not caught my one layer of
defense, it will be caught by the next layer.

 A bank is typically more secure than a
convenience store . (security cameras, guards, a
vault – that’s a 3-tier defense already !)

PRINCIPLE#3:SECURE FAILURE

 Any system having complex functionality will
have failure modes

 Problem – failures can cause insecure behavior
in the system

 All someone needs to do is force failure to take
advantage of the system.

 Thus make sure that if and when your system
fails, it fails in a secure manner.

PRINCIPLE#4:LEAST PRIVILEGE

 Accesses to perform operations within the
system should be given out very specifically and
for specific amount of time

 Coding with the attitude “ someday I may want
to perform these operations so lets set up these
privileges for convenience” is a very bad idea

PRINCIPLE#5:COMPARTMENTALIZE

  The idea behind this to essentially minimize the
damage that can be done if a part of your system
is compromised

 This will make implementation of the previous
principle easier!

 However, use compartmentalization in
moderation or you will end up with lots of little
fragments of software that you cannot manage!

PRINCIPLE#6:SIMPLICITY

 The KISS principle (Keep it simple stupid!)

 But don’t oversimplify things!

 Designing a website online involving data transactions
without using encryption – not a wise idea

  As simple as it can get while still meeting your
security requirements

 Reuse of components

A LITTLE DIVERSION..

 Choke Points

 Design all the security-critical operations to be
funneled through specific number of choke points.
Monitoring anomalies becomes easier

 Usability

 The hardest and most important task – finding
 a balance between security and usability

PRINCIPLE#7:PROMOTE PRIVACY

 Privacy is of primary importance – especially for
online software applications

 Trade-off :Privacy against usability

 Eg: storing credit card numbers in the website
 database and auto-prompting a returning user
 (high usability , low privacy/low security)

PRINCIPLE#8:IT’S HARD TO HIDE SECRETS

 No matter how hard you try to hide your data,
there is always going to be someone who will find
a way to break through to it

 Reverse engineering is not that difficult!

  So keep that in mind while chalking out your
design – will my sensitive data still be safe if
people know how my system works?

PRINCIPLE#9:DO NOT EXTEND TRUST EASILY

 Don’t blindly assume that all end-users of your
software are going to be trustworthy

 Social engineering attacks (customer support)

 Any entity that you are trusting with sensitive
data , you are implicitly trusting anyone that the
entity will in turn trust.

PRINCIPLE#10:TRUST THE COMMUNITY

  It looks contradictory to the previous principle
(sometimes you need to use your own discretion)

 This principle applies as long as you are sure
that the community is working on the security
aspects of the components that you want to use
and is dedicated to it.

 Eg: in cryptography it is considered bad to use
 an algorithm that is not publicly known and
 has been scrutinized.

SOME OO PRINCIPLES YOU CAN
USE TO IMPLEMENT THESE
PRINCIPLES !

 Encapsulation

 Abstraction

 Single Responsibility Principle

GOOD PRACTICES AND APPROACHES(1)

 Training and education

 -The most important people involved are the
 design architects , developers and testers

 -Essential to train them to think not just
 “functionality” but also “security”

 -Make security an integral part of learning
 how to program

GOOD PRACTICES AND APPROACHES(2)
 Microsoft’s Trustworthy Computing Initiative

 -The process encompasses the addition of a
 series of security-focused activities and
 deliverables to each of the phases of
 Microsoft's software development process

 -Microsoft is focusing on people, process and
 technology to deal with the software security
 problem.

MICROSOFT’S TRUSTWORTHY COMPUTING
INITIATIVE

GOOD PRACTICES AND APPROACHES(3)

 Measurement is an important part of effective
software security implementation.

 -At every step quantify the impact that your
 design decision is having upon the security
 of the software you are trying to build

IF WE HAVE NOT CONVEYED THE
POINT ALREADY ..

 The importance of looking into security right at
the beginning of development

 NOW MOVING ONTO A DIFFERENT ASPECT..

INTEGRATING SECURITY WITH AGILE
METHODOLOGIES

Agile – high development speed with more
customer satisfaction.

Agile methods are characterized by small
releases, simple design, tests, pair programming,
continuous integration, collective ownership, on-
site customer, open workspace and 40-hour weeks.

PROBLEMS & MEASURES

 Some of the agile methods are in direct conflict
with secure SDLC processes.

 Eg: Thread modelling – secure SDLC process,
conflicts with design principles of agile methods.

 Care should be taken while integrating an agile
methodology with a security measure activity.

  It could decrease the agility.
 We present a five-step method to introduce

security measures in the software development
cycle, published by Hossein Keramati, Seyed-
Hassan Mirian-Hosseinabadi.

STEP 1:
EXTRACTING SECURITY ACTIVITIES

  List activities and sub
activities to be performed
to reach secure systems.

  Name the list as security
activities.

  Used as a basis for next
steps.

  Classify them.

  Figure represents the
security activites in the
analysis phase of SDL

STEP 2:
CALCULATING AGILITY DEGREE OF SECURITY
ACTIVITIES

  Agility degree of an activity-
level of compatibility with
agile methodology.

  Grade between 0 and 5.
Greater number – higher
compatibility, lower grade –
conflict.

  1- column matrix – Agility
degree vector (ADVect) as
shown.

  Agility degree – sum of values
in ADVect of an activity.

STEP 3:
INTEGRATION OF AGILE AND SECURITY
ACTIVITIES

 Analyze agile methodologies and identify their core
engines.

 Calculate agility degree for extracted agile
activities.

 Compare agility features of extracted activities and
security activities.

 Estimate agility degree of a combined activity.

 Activity Integration Compatibility Matrix (AICM).

STEP 3: CONTD….

 AICM – table , row – agile activities, column-
security activities.

 Compatible activities – 1 inserted, 0- non-
integrable security and agile activities.

  Introducing a new parameter: ART - Agility
Reduction Tolerance , decimal number > 0 and <5.

 ART controls insertion of low agile security activity
to existing software development process.

STEP 4:
 ACTIVITY PROCESS INTEGRATION ALGORITHM

1)  Highest agility degree security activity selected.

2)  Using AICM, list agile activities integrable with
the security activity selected.

 Select heaviest or the lowest agility degree
activity.

3)  Integrate both the activities to form newAct with
new agility degree.

4)  Replace newAct with original activity, recalculate
agility degree.

STEP 4: CONTD…

4)  Process agility degree + ART >= newAct,
integration acceptable. If not, security activity
should not be inserted.

5)  Remove the selected security activity from the
list.

6)  Redo if there are security activities in the list.

 ART parameter controls agile nature of the
method.

STEP 5:
AGILITY REDUCTION TOLERANCE

 ART can be tuned for balancing between
decreased level of agility due to security activity
and benefits from developing secure software.

 With a cost/benefit analysis and cost of agility
reduction in development process , ART
parameter’s value can be calculated to inject
security activities in the process.

CONCLUSION

 Security is a very important aspect of software
development.

 Measures can be taken to integrate it in the
software development life cycle.

  It is possible to effectively integrate security into
agile development as well

DISCLAIMER

 We have covered only a few approaches on how to
build secure software

 There’s a whole LOT of information available if
you Google Software Security !

THE SOURCE OF OUR INFORMATION

  http://www.cigital.com/papers/download/bsi1-swsec.pdf
  http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp=&arnumber=1193213&userType=inst&tag=1
  http://www.ibm.com/developerworks/linux/library/s-

link.html
  http://www.ibm.com/developerworks/library/s-fail.html
  http://www.ibm.com/developerworks/library/s-priv.html
  http://www.ibm.com/developerworks/library/s-simp.html
  http://www.ibm.com/developerworks/library/s-princ5.html
  http://ce.sharif.edu/~mirian/Accepted%20Paper/AICCSA08-

keramati.pdf

THANK YOU

QUESTIONS ?

