

  Quantify the project
•  Quantifying schedule , performance ,work effort ,

project status
•  Helps software to be compared and evaluated

  Better Estimates
•  Use the measure of your current performance to

improve your future work estimates

  Resolve Software crises
•  Such as wrong cost estimates, slow productivity

 rate and so on

  Estimate the cost & schedule of future projects

  Evaluate the productivity impacts of new tools and
techniques

  Establish productivity trends over time

  Improve software quality

  Forecast future staffing needs

  Anticipate and reduce future maintenance needs

  Software metrics are units of measurement of software
product and the process by which it is developed

  Metrics and measures form the basis for numerous
models of the software development process

  Products
•  Explicit results of software development activities
•  Requirement specifications documents, design

diagrams ,source code listings and the end product

  Processes
•  Activities related to software development life cycle
•  Time, effort and cost

  Resources
•  Available resources characteristics
•  Number of developers ,their skills and hardware

reliability and performance

  Hybrid
•  Mixtures of product and process metrics
•  Cost per function point, and time to deliver and LOC

Software Metrics

Product Process

External

Dynamic

Internal

Static

Design Specification Code

Hybrid Resource

Structured Procedural Object Oriented Object Oriented

  External metrics
•  Properties visible to the users
•  Not available till the late stages of the software

development life cycle
•  Functionality, quality, reliability, maintainability

  Internal metrics
•  Address properties visible only to the development

team
•  Cost, effort, LOC, speed, memory

  Static
•  Collected from the static artifacts of the software

such as specification
•  Documents, design diagrams and code listings

  Dynamic
•  Collected during the run-time of the software from

its executable form
•  Extent of class usage, Dynamic Coupling and Dynamic

Lack of Cohesion

  Specification
•  Analyze the product specifications and provides early

feedback about the developing software product
•  De Marco’s Bang metric would distinguish a system
 whether the system is function-strong or data-strong

  Design
•  Measured at a bit later stage of the software

development process
•  Helps refining the design
•  Henry and Kafura's information flow ,reuse ratio and

coupling factor

  Properties of the written code
  Size-Oriented Metrics

•  Size of the software produced
•  LOC - Lines Of Code
•  KLOC - 1000 Lines Of Code
•  SLOC – Statement Lines of Code (ignore

whitespace)

  Typical Measures
•  Errors/KLOC, Defects/KLOC, Cost/LOC,

Documentation Pages/KLOC

  McCabe’s Complexity Measures
•  McCabe’s metrics are based on a control flow

representation of the program
•  A program graph is used to depict control flow
•  Nodes represent processing tasks (one or more code

statements)
•  Edges represent control flow between nodes
•  Applied to individual functions , modules , methods

or classes within a program

  Count of the number of linearly independent
 paths through the source code

  M = E － N + 2P where
•  M = cyclomatic complexity
•  E = the number of edges of the graph
•  N = the number of nodes of the graph
•  P = the number of connected components
•  For a single subroutine , P is always equal to 1 and

increases with the number of sub-programs in
question

i = 0;
If (i<n-1) do
 j = i + 1;
 while (j<n) do
 if A[i]<A[j] then
 swap(A[i], A[j]);
 end do;
 i=i+1;
end do;

1

3

5 4 6

2

  M = 8 – 6 + 2 = 4
  Basic Set

•  1, 6
•  1, 2, 6
•  1, 2, 3, 4, 5, 6
•  1, 2, 3, 5,6

  Helps in determining the number of test cases that
are necessary to achieve thorough test coverage of a
particular module

  M is the number of (enclosed) regions/areas of the
planar graph

  Number of regions increases with the number of
decision paths and loops

  A quantitative measure of testing difficulty and an
indication of ultimate reliability

  Experimental data shows value of M should be no more
then 10 - testing is very difficulty above this value

  Weighted Methods per Class

  Method Hiding Factor (MHF)

  Method Inheritance Factor (MIF)

  Polymorphism Factor (PF)

  Coupling Factor (CF)

 WMC =

  ci is the complexity (e.g. cyclomatic complexity) of each
method in a class

  How much time and effort is required to develop and
maintain the object

  The larger the number of methods in an object, the greater
the potential impact on the children

  Objects with large number of methods are likely to be more
application specific, limiting the possible reuse

  Classes with a large Weighted Methods Per Class value can
often be refactored into two or more classes

  Measure of the use of the information hiding concept
that is supported by the encapsulation mechanism

  A very low MHF indicates an insufficiently abstracted
implementation

  Conversely, a high MHF would indicate very little
functionality

  MHF Usage:
•  Helps to maintain the modularity of the code
•  Reduce "side-effects" due to implementation

refinement
•  Support a top-down approach
•  Test and integrate systems incrementally

  Measure of inheritance

  Depth of Inheritance Tree (DIT) is the maximum length
from a node to the root/base class

  Lower level subclasses inherit a number of methods
making behavior harder to predict

  Deeper trees indicate greater design complexity

  Number Of Children (NOC) is the number of subclasses
immediately subordinate to a class

  Viewpoints

•  Depth is generally better than breadth in class hierarchy,
since it promotes reuse of methods through inheritance

•  Classes higher up in the hierarchy should have more sub-
classes then those lower down

•  NOC gives an idea of the potential influence a class has on
the design classes with large number of children may

 require more testing

MIF = .

  Mi(Ci) is the number of methods inherited and not
overridden in Ci

  Ma(Ci) is the number of methods that can be invoked
with Ci

  Polymorphism potential is measured
  The number of methods that redefines inherited

methods, divided by maximum number of possible
distinct polymorphic situations

PF = .

  Mn() is the number of new methods
  Mo() is the number of overriding methods
  DC() number of descendent classes of a base class
  Allows refinement of the class taxonomy

  Coupling factor represents the number of collaborations
between two classes (fan-out of a class)
•  the number of other classes that are referenced in the class

  As collaboration increases reuse decreases
  High fan-outs represent class coupling to other classes/

objects and thus are undesirable
  High fan-ins represent good object designs and high level of

reuse
  Not possible to maintain high fan-in and low fan outs across

the entire system

  The Process
•  Select appropriate metrics for problem

•  Utilized metrics on problem

•  Assessment and feedback

  Formulate
  Collect
  Analysis
  Interpretation
  Feedback

  McCabe & Associates (founded by Tom McCabe, Sr.)
•  The Visual Quality ToolSet
•  The Visual Testing ToolSet
•  The Visual Reengineering ToolSet

  Metrics calculated
•  McCabe Cyclomatic Complexity

•  McCabe Essential Complexity

•  Integration Complexity

•  Lines of Code

•  Halstead

  A metric analyzer C, C++, Java, Ada-83, and Ada-95
 (by Tim Littlefair of Edith Cowan University, Australia)

  Metrics calculated
•  Lines Of Code (LOC)

•  McCabe’s cyclomatic complexity

•  Weighted Method per Class, Number of Children,
Depth of Inheritance and Coupling

  Generates HTML and XML reports

  Freely available

  http://cccc.sourceforge.net/

  OO metric calculation tool for Java code (by Cain and
Vasa for a project at COTAR, Australia)

  Requires Java 1.2 (or JDK 1.1.6 with special extensions)

  Metrics
•  Lines Of Code per class (LOC)
•  Cyclomatic complexity
•  LCOM (by Henderson-Seller)

  Availability
•  Is distributed under GPL

  http://www.it.swin.edu.au/projects/jmetric/products/jmetric/

  A Source of Information for Mission Critical Software
Systems, Management Processes, and Strategies

http://www.niwotridge.com/Resources/PM-SWEResources/SWTools.htm

  Defense Software Collaborators (by DACS)
http://www.thedacs.com/databases/url/key.hts?keycode=3

  Metrics tools for C/C++ (Christofer Lott)
http://www.chris-lott.org/resources/cmetrics/
  GEN++ is an application-generator for creating code

analyzers for C++ programs
http://www.cs.ucdavis.edu/~devanbu/genp/down-red.html

  Software Metrics - A Taxonomy (Faculty of Computers and
Information ,Cairo University ,Cairo ,Egypt)

  "Design Metrics for Object-Oriented Software Systems“by
Fernando Brito e Abreu, INESC/ISEG

  S. Conte, H. Dunsmore, and V. Shen , "Software Engineering
Metrics And Models, 1ST edition." ,Benjamin/Cummings,
Menlo Park, CA. , 1986

  R. S. Chidamber and C. F. Kemerer , "A Metrics Suite For
Object Oriented Design" , IEEETransactions on Software
Engineering, Vol. 20, No. 6. , 1994

