
By: Aditya Bhave
CSCI-5828 Foundations of Software Engineering

03-19-2010

  Embedded systems software background

  Software Engineer
◦  Sasken Technologies - multimedia systems device drivers

  Bachelors degree in Electrical engineering

  Currently in my first year of MS in Electrical
Engineering.

  Working with Prof. Mark Rentschler (Mech Engr) on
medical imaging projects.

2 Software Disasters

  Software Disasters
◦ What do we mean by disasters ?
◦  Main culprits
◦  Some examples…

  Case study : DIA baggage handling system
◦  Key decisions that went wrong !

  Conclusion

  References

3 Software Disasters

  Dilbert – Scott Adams

  If debugging is the process of removing
bugs, then programming must be the process
of putting them in ...

 - Edsger Dijkstra
4 Software Disasters

  Caused by
◦  Erroneous software

◦  Erroneous management techniques

  Consequences :

◦  Rework

◦  Lost productivity

◦  Actual damage

◦  Expensive, embarrassing, destructive and deadly

5 Software Disasters

  Poor
◦  Requirements gathering
◦  Project planning
◦  management methodology

  Inability to understand project technology

  Insufficient expertise –coding errors
◦  Example: outsourcing software projects

  Lack of risk management

6 Software Disasters

  Pentium’s Long Division (1993)

  Mars Climate Orbiter(1999)

  The Ariane 5 crash (1996)

  AT&T Lines Go Dead (1990)

  Mars Pathfinder(1996-97)

7 Software Disasters

  Pentium’s Long Division (1993)
◦  Cost: $475 million,

 corporate credibility

◦  Mistakes in dividing floating-point numbers within a
specific range
  Example: 4195835.0/3145727.0 =1.33374
 instead of 1.33382, an error of 0.006%

◦  Intel replaced the chips for anyone who complained.

  A flawed division table in the divider in Pentium
FPU :
◦  missing about five out of a thousand entries

8 Software Disasters

  Mars Climate Orbiter(1999)

  Cost: $125 million approx.

  Causes:
◦  Inconsistent usage of metric system and English

system units within the same software

◦  Overall process failure to detect such a misuse

9 Software Disasters

  The Ariane 5 crash (1996):
◦  Rocket capable of hurling a pair of
 three-ton satellites into orbit

◦  Project worth ten years and
 $7 billion approx.

◦  Exploded in less than a minute after launch

  Reason
◦  small computer program trying to stuff the sideways

rocket velocity (a 64-bit number) into a 16-bit space

10 Software Disasters

  Digging deeper:
◦  Assuming technical consistency with previous

versions
  Ariane 5 was faster than Ariane 4
  thus velocity field overflowed

◦  The buggy code actually served no purpose after
launch !

◦  One of the unnecessary “special features” of the
system

11 Software Disasters

  AT&T Lines Go Dead (1990)
◦  Cost: 75 million phone calls missed,
 200 thousand airline reservations lost

  One switch suffered a minor mechanical
problem
◦  Result : Center shut down

◦  Effect :
  This center caused all other stations to shut down
  Brought down the entire AT&T network for 9 hours.  

12 Software Disasters

  Mars Pathfinder(1996-97)
◦  Unconventional landing

◦  Total system resets

◦  Data losses

  Reason:
◦  Priority inversion created for a few tasks

◦  Underlying VxWorks not used properly

13 Software Disasters

  Causes of priority inversion:
◦  Preemptive priority scheduling of tasks

◦  Synchronized access to the “information bus”

◦  Low priority meteorological data gathering task

◦  Medium priority communications task

◦  High priority ISR requiring the information bus

  Action taken :
◦  Disaster avoided as the system could be remotely

debugged and fixed

14 Software Disasters

  DIA Baggage handling system
(1994)
  Extremely complex and expensive

  The airport sat idle for 16 months

  Delay cost: $560M USD approx.

  $1M monthly maintenance cost

  The System never functioned properly and was
scrapped(2005)

15 Software Disasters

  Change of Strategy

  Why did they still proceed?

  Schedule, scope and budget commitments

  Acceptance of change requests

  Laxity in taking actions

  Architectural and design issues

Software Disasters 16

Software Disasters 17

Individual airline
baggage handling
systems scrapped

Introduction of a
centralized baggage
handling

Shift in
technology
 Shift in
organizational
responsibilities

Poorly Timed
decision

  Failure to
  link the airport’s overall strategy (the goal of having

one of the world’s most efficient airports) with the
sub-strategy of how to build the baggage system

  ask the critical question of where the responsibility
for development of the baggage system needed to
be

18 Software Disasters

  The 1990 Breier Neidle Patrone Associates
report

  The complexity was too high for the system to be built
successfully

  Analysis of the three bids received indicated
that none of the vendors could build the
system in time for the Oct 1993 opening

  Munich airport experts:
  The much simpler Munich system had taken 2 full years

to build and that it had run 24 / 7 for 6 months prior to
opening to allow bugs to be ironed out

19 Software Disasters

  Failure of
  both airport management and BAE’s (Boeing) Senior

Management team to heed the advice they were
receiving

  the airport’s Project Management team to have the BAE
proposal and prototype independently reviewed (by a
third consultant party)

  Underestimating complexity due to lack of
background in related fields, leading to false
assumptions

20 Software Disasters

  BAE committed to deliver
 the complete system under
 a fixed commitments of :

  Scope
  Schedule
  Budget

  Hasty decisions:
  contractual conditions and scope of work were hammered

out in just three “intense” working sessions

21 Software Disasters

BAE’s top management
failed to recognize the
level of RISK in this.

Software Disasters 22

Airlines (key stake
holders) excluded

from initial
discussions

Change requests by
stake holders
which had to be
accepted

Significant
redesigning !

Failure to understand the
impact of changes on a
already troubled project

Hints of
communication
disconnects that
were occurring inside
the project

  LATE

  The highest level had little idea what the true status
of the project was

Software Disasters 23

Decision to call upon consultants to
review the situation

Decision to scrap the automated
system and build a manual system

Damage control after 4 missed deadlines
and 6 months of running behind schedule

  Design chosen - complex and error prone

Software Disasters 24

100+ individual PCs
networked together. Failure
of any one of the PCs could

result in an outage

Distributed design added to
the difficulty of resolving
problems when they arose

System kept piling up
more and more bags in
case of a jam making it
worse

Schedule pressure was
excessive; making the team
settle for the first design
they thought of…

Failures Failures

  The underestimation of complexity

  A lack of planning resulting in
subsequent changes in strategy

  Excessive schedule pressure

  Making firm commitments in the face
of massive risks and uncertainty

  Poor stakeholder management

  Communications breakdowns

  People working in silos

  Poor design

  Failure to perform risk
management

  Failure to understand the
implication change requests
might have

  Lack of management oversight

Software Disasters 25

The Denver debacle is a template for failure that many other projects
have followed. A few of those are:

  Case Study – Denver International Airport Baggage Handling
System – An illustration of ineffectual decision making

 Calleam Consulting Ltd, 2008.

  http://www.embedded.com/2000/0005/0005feat2.htm

  http://www.around.com/ariane.html

  http://research.microsoft.com/en-us/um/people/mbj/
Mars_Pathfinder/Mars_Pathfinder.html

  Software Runaways : Lessons Learned from Massive Software
Project Failures, Robert L. Glass, Prentice-Hall, 1998.

  Dilbert – Scott Adams http://www.dilbert.com/

  Typo errors
◦  A simple x==2 instead of x=2
◦  Typing a!=b instead of a=!b

  Assumptions about underlying hardware and OS
◦  #include <stdio.h>
 #include <time.h>

 int main()
 {

 time_t biggest = 0x7FFFFFFF;
 printf("biggest = %s \n", ctime(&biggest));
 return 0;
 }

 Will the output vary for PC’s and UNIX systems?
◦  unsigned int zero = 0;
 unsigned int compzero = 0xFFFF; //1's complement of zero

 The right way to do this ?

  #define MIN(A,B) ((A) < = (B) ? (A) : (B))
 least = MIN(*p++, b);
 Whats wrong with this approach ?

  void foo(void) {
unsigned int a = 6; int b = -20;
(a+b > 6) ? puts("> 6") : puts(" < = 6");
}
◦  What would the output be ?

  Understanding the integer promotion rules in C

  Using Non-portable coding techniques: Bit fields for example

 Back

