
Software Engineering in
the Aerospace Industry

Why it is so hard

CSCI 5828 - Spring 2010
by Jerel Moffatt

Overview

• GAO Study - Large scale project
assessment

• Standish Group CHAOS Study

• Difficulties specific to the aerospace
industry

• Agile methods vs heavy waterfall methods

• Where do we go from here

Disclaimer

• Will focus on projects with NASA as
customer

• NASA is not the bad guy
• NASA has done an uncountable number good things

• Software engineering is ‘just hard’

GAO Study

• In February 2010, the United States
Government Accountability Office (GAO)
did an assessment on selected large scale
NASA projects
• GAO assessed 19 NASA projects with a combined life-cycle cost of more

than $66 billion

• Findings were that most missions were
over budget, and behind schedule

• Of those 19 projects, 4 are still in the formulation phase where cost
and schedule baselines have yet to be established, and 5 just entered
the implementation phase in fiscal year 2009 and therefore do not
have any cost and schedule growth.

• 9 of the 10 projects that have been in the implementation phase for
several years experienced cost growth ranging from 8 to 68 percent,
and launch delays of 8 to 33 months, in the past 3 years.

• These 10 projects had average development cost growth of almost
$121.1 million—or 18.7 percent—and schedule growth of 15 months,
and a total increase in development cost of over $1.2 billion, with over
half of this total—or $706.6 million—occurring in the last year.

• Example - GLORY

• Initial baseline
cost at $168.9

• Cost went way
over, and was re-
baselined at
$259.1

• Latest cost Oct.
2009 at $296.1
which is a 14.3%
increase since the
re-baseline, and a
total increase of
75% !

Cobb’s Paradox

• “We know why projects fail, we know how to
prevent their failure -- so why do they still fail?”
• - Martin Cobb Treasury Board of Canada Secretariat , Ottawa, Canada

• Standish Group CHAOS Study

• 10 Reasons Projects are late, and/or over budget
relating to software development

Success Criteria
1. User Involvement -19
2. Executive Management Support -16
3. Clear Statement of Requirements -15
4. Proper Planning -11
5. Realistic Expectations -10
6. Smaller Project Milestones -9
7. Competent Staff - 8
8. Ownership - 6
9. Clear Vision & Objectives - 3
10. Hard-Working, Focused Staff - 3
TOTAL 100

User Involvement

• Typically, user involvement consists of:
• engineers, operators, and scientists who are located in separate facilities,

separate states, or even separate countries

• Long distance can hamper communication
paths and thus iterative user involvement
• Often software developers never even meet some of the users

• Politics often plays a role in user
involvement, and not for the better
• Mars Climate Orbiter mission failed due to famous unit conversion error

Mars Climate Orbiter
• Mars Climate Orbiter 1998

• Failed due to unit conversion
error

• Imperial units vs metric

• Caused spacecraft to enter
Mars orbit at 57 km instead of
the planned 140-150 km orbit

• Drag likely destroyed the
vehicle

• Communication errors during
testing (between contractor)
likely a root cause of this
failure

Executive Support &
Ownership

• Failure consequences are unacceptable
• Budgets are high, tax dollars are at stake

• Projects failing badly have to explain themselves before congress

• Does the project team have a stake?
• Often there are no direct incentives for success by individual developers

• Contractors may have bonuses, but largely, the business if funded by
government money and there are no ‘profits’ to share if success is ample

• Who is the boss?
• Isn’t always clear who is in charge sine NASA provides oversight and

teams also have dedicated executives

Clear Statement of
Requirements

• NASA is big on requirements
• Insists on formally documented, tracked, and verified requirements

• But requirements are not flexible, or
iterative
• Requirements are viewed by NASA as being solidified up front via a

waterfall process definition

• Does not anticipate and/or allow for iterative requirements

• Makes it difficult for a contracted organization to implement their own
Agile software process beneath

Proper Planning &
Milestones

• Schedules are ‘success oriented’
• But often failure to meet schedule date is unacceptable

• Launch date may be physically unable to move due to planetary
alignments

• Launch date may be extremely costly to move due to schedules of
launch pad activities and launch vehicles

• Does not follow 80/20 rule
• “20% of a project's features will provide 80% of user benefits”

• Missions are built on meeting science (or other mission) objectives not on
benefits to the user which may be ‘negotiable’. Everything is decided up-
front

• Fixes or updates or improvements post launch are often unacceptable or
impossible

Testing Schedule
Compromised

• Due to inability for milestones to slip, there
are bound to be consequences

• Testing cut short
• Integration tests merged with system tests

• System tests merged with acceptance tests

• Impact of adding requirements
understated, and impact of removing
requirements is under analyzed

Code Bases

• Facilities usually develop software for more
than one mission

• Missions have overlap in code, but not
necessarily in process definition or rigor

• Changing the code for mission A may also
change it for mission B
• Different missions have different testing, documenting, and verification

processes

• Leads to interesting and sometimes costly configuration management
concerns

Conclusion

• So we know that projects are over budget
and behind schedule

• And we know why projects are over
budget and behind schedule

• This is not a unique problem to aerospace
software
• Most all software projects have similar concerns, perhaps not as strict

What would NASA do?

• There are two extremes to the pendulum
• More strict bloated process, more meticulous and verbose

documentation

• Streamlined (Agile) processes, only documenting that which provides
added benefit

• Over the past decade, NASA has been
leaning towards the former solution, not
the latter
• NASA has adopted CMMI to measure their process model

• In itself, this does not imply a heavier process, but can add to
cumbersome oversight when CMMI is attempted to be flowed down to
other organizations who might do things differently

Agile Methods

• Agile software development focuses on
iterative development

• Uses constant small measurements to
evaluate and adapt

• Teams focus on meeting functionality
requirements based on user stories and
iterative user involvement

• Agile doesn’t mean less process, it means
more focused process

Agile Methods in
Aerospace

• Since NASA executes projects in a
waterfall process, working Agile methods
beneath is difficult
• NPR 7150.2 - standards NASA levies on all contracted organizations

• Defines much of the processes, documentations, and plans that NASA
requires for all work on a given project

• Requirements are due and finalized up front, prior to completing the
design, much less actual implementation of the design

• Specific documentation is often required

• Keeping user stories on note cards may not be acceptable and
would have to be done in addition to other redundant efforts of
tracking work

Added Risk?

• NASA may be reluctant to adopting more Agile
methods due to a perception of added risk

• Peter Norvig quotes NASA administrator Don
Goldin as saying:

We’ve got to do the better, faster, cheaper. These space
missions cost too much. It’d be better to run more
missions and some of them would fail but overall we’d
still get more done for the same amount of money.

• Coders at Work (by Peter Seibel)

Where are we going
from here?

• Added complexity and weight to the
development process does not appear to
be helping

• As NASA begins to work with more
commercial organizations to develop
software, cost savings could be found by
allowing them to develop the software
under their own methods
• A delicate balance between managing the outcome of the software with

managing the development of the software must be achieved

• Always keeping in mind, there is ‘No Silver Bullet’ (Fred Brooks) that will
suddenly make software engineering in aerospace an ‘easy’ task

