
Enterprise Integration

Enterprise Service Bus
Java Message Service

Presented By
Ian McNaney

University of Colorado at Boulder

Motivation

  Enterprise context
  Many different systems

-  Varying ages
-  Varying technologies
-  Varying business owners

  They need to communicate
-  Billing to fulfillment
-  Fulfillment to inventory
-  Just about everything to accounting

Motivation

  Organizations and their offerings develop
over time

  As do their software systems and
environment

-  Corporate mergers
-  Acquisitions
-  Changing development methodologies

over time
-  New products and systems to back them

Legacy Systems

  A polite term for systems nobody dares
touch

-  Too big or risky to replace, too important
to discard

-  Maybe the last person who knew anything
about it quit four years ago

  The decision has been made to leave it
alone

  It still has to receive a data feed from the
new billing system somehow

Direct Communication Problems

  Brooks' Law - More systems leads to more
potential communication channels

  Different systems can be based on
-  Different architectures – endianness

issues
-  Different languages – makes rpc and

serialization/deserialization tricky
  Reliable delivery issues

-  What if the other system is down or
there's network disruption?

Direct Communication Problems

  Modifying systems to handle these issues
leads to a large amount of code that is

-  Unrelated to the business logic
-  Repeated in each system

Direct Communication Problems

  Many systems cannot (or will not) be
modified to directly communicate with other
systems

-  Closed source 3rd party apps
-  Legacy systems

  Even if we could modify each system for
direct communication, do we want to?

-  New release cycle for every
communicating system whenever its
communication partners change

A Solution

  Message Oriented Middleware (MOM)
-  Each application sends and receives

through an intermediary
-  Separate system responsible for reliable

delivery, message routing, etc.

  Systems can focus on what they do,
allowing the complexity of communication
to be handled elsewhere

  Consolidate communication configuration
in one place

Other Options

  Won't be presented, but other options exist
-  Standardize on one language and use its

RPC mechanism
  Still need to worry about reliability and

retry
-  Web Services with lookup

  Can be thought of as a subset of MOM
  Lookup resolves the destination service
  HTTP with retry provides the transport

and some degree of reliability

JMS and ESB

  I'll talk about
-  Java Message Service (JMS) as a

foundation for an...
-  Enterprise Service Bus (ESB)

JMS

  Java Message Service 1.1
  Defines a messaging API and a set of

behaviors, not a wire level protocol
  Different implementations are generally not

compatible with one another at the wire
level.

  Many implementations provide HTTP and/
or SOAP interfaces, so non-Java
languages can play too.

A JMS Message

  Headers
-  Message metadata relevant to delivery –

destination, reliability mode, TTL,
message ID, etc.

  Properties
-  Custom defined additional headers –

intended for use in filtering messages.

  Body
-  The content of the message.

JMS Message Body

  Several types are defined by the standard,
many of which are Java-specific.

  Of interest to us in a heterogeneous
environment are the non Java-specific
types:

-  TextMessage – the payload is literally just
text. Handy for XML. Recommended.

-  BytesMessage – the payload is a stream
of raw bytes.

JMS Destinations

  JMS supports two types of message
detinations

-  Queue – for point-to-point communication
-  Topic – for broadcast communication

  Every message must have a destination

JMS - P2P

  JMS Queues provide point-to-point (p2p)
communication.

-  Each message is sent to one destination queue
-  Messages in the queue are delivered in order

under normal circumstances
-  Messages are delivered to one consumer, but

multiple consumers can consume from a single
queue – automatic load balancing if order
doesn't matter

-  Analogous to a post office box – messages pile
up until they are consumed

JMS - Pub/Sub

  JMS Topics provide for broadcast to
multiple consumers

-  Publish/Subscribe
-  Consumers establish a subscription to the

topic
-  Each subscriber receives a copy of each

message that arrives on the topic
-  Disconnected clients miss messages unless

a Durable Subscription is established
-  Analogous to a radio station – a consumer is

either listening or it isn't

JMS - Reliable Delivery

  Reliable delivery can be requested for
messages sent to queues

-  Persistent – the JMS provider persists the
message to disk so that it will be retained in
case of a failure. Once-and-only-once.

-  Non-persistent – persistence to disk is not
required, reducing messaging overhead.
The message may be lost in case of a
failure. At-most-once.

JMS - Message Ordering

  The oldest message is always delivered
first, but this does not mean that messages
are delivered in order that they arrived

-  Redelivery in the case of an
unacknowledged message

  Redelivered header will be set in this case
-  Clients can filter messages based on

headers or properties, skipping over
some older messages

Broker

  The running software instance responsible
for managing queues and topics

  Keep in mind that no delivery guarantee is
absolute

-  Physical destruction of the backing store
after a broker outage will prevent delivery
of any pending messages

Clustering / HA

  Brokers, being software on computers, go
down for maintenance or due to hardware/
software faults.

  To improve uptime establish a high
availability (HA) replicated cluster

-  Primary/Failover approach is common
  Primary is “active” until a fault, replicating

its state to the failover.
  When the primary fails the failover

becomes active and accepts connections

Failover

  Clients need to reconnect to the failover broker.
Sometimes the JMS driver automatically handles
this.

  Failed node's persisted state will become stale
almost immediately, while the failover becomes
“correct”

  Some implementations (SonicMQ) claim to re-
synchronize state when the primary come back
up.

  Others (ActiveMQ) require manual sync and full
cluster restart.

Broker-Broker Connections

  Systems at separate, disconnected sites need to
communicate.

  Brokers can establish an SSL tunnel between
sites, or between different brokers on-site.

-  With network administrator cooperation
-  Will need to allow the inbound/outbound

connections at the firewall
  Secure messaging pipe between sites
  Not exactly a cluster since queues/topics aren't

shared, just remotely accessed.

Administrative Issues

  Slow/Offline consumers
-  Persisted messages consume system

resources
-  Eventually resources become exhausted
-  All bets are then off – persistent

messages may be dropped.
  JMS Broker crash/restart

-  Loss of non-persistent messages.
-  Clients need to detect and reconnect or

they'll become offline consumers.

Non-Java Interoperability

  Many JMS providers allow for non-Java
clients to produce or consume messages

-  HTTP post/get or Web Service interface
-  Monitor file system locations for

messages to send, drop contents of a
queue to a directory

  Others are not fundamentally Java-centric
-  IBM WebSphere MQ is decades old –

JMS was bolted on later

Popular JMS Implementations

  Apache ActiveMQ
  Fuse (based on Apache ActiveMQ)
  Progress SonicMQ (closed source)
  IBM WebSphere MQ (closed source)
  JBoss JMS
  Oracle (closed source)
  Many J2EE application servers contain limited

JMS functionality for communication between
apps on the server.

Enterprise Service Bus

  Build on top of the reliable messaging
services provided by JMS

  Provide additional capabilities
-  Content based routing
-  Message replication
-  Message transformation or translation
-  Synchronous or asynchronous invocation

of external web services
-  And more...

What Do We Gain?

  Allows us to route messages along a
specific processing path based on its
details – polymorphism for messages

  A new subscription message may be
handled differently than a cancellation
message

  All without senders or receivers knowing or
caring what happens in between

XML Messages

  Internally the ESB routes standardized
XML messages

  At the edges, where clients connect, the
message may

-  Already be in the canonical format
-  Be transformed from a language or

platform specific format into the canonical
format

  You don't have to use XML, but I highly
recommend something like it

Content Based Routing

  The message is inspected by a service on
the ESB

  It is dispatched to one or more destinations
based on its type and content

  Configured within the ESB itself, often
through a drag/drop GUI

Message Replication

  Create copies of a message and forward
each to its own destination

  Useful when a known set of systems each
need a separate copy

  Can also be accomplished with topics and
durable subscriptions

-  That can be problematic for non-Java
clients

-  Also problematic for buggy Java clients
that don't reconnect with the same name

Message Transformation

  With XML messages this is simple
-  XSLT
-  Can call out to external services for

portions of the data
  Usually only relevant at the edges of the

bus, to translate into or out of the canonical
format

  Also useful when converting from one
message type to another somewhat related
one

Invocation of Web Services

  Messages that arrive at a destination can
be translated and forwarded on as HTTP
requests to Web Services.

  The WS response can be forwarded on to
the next step in the flow (synchronous)

  The WS can post back later via JMS or
HTTP for asynchronous operation

  This came in handy for submitting orders to
external vendors

Case Study - FindLaw

  Corporate business systems hosted in one
data center

-  SAP
-  Order entry and tracking
-  Inventory control

  Web site and related products hosted in a
separate data center

-  Web Site
-  Ads and fulfillment

Use Case – Purchase an Ad

  A lawyer calls the sales rep and works out a deal
  The rep enters the information into Tracker, an in-

house inventory tracking application
  “Magic” happens
  SAP starts billing the customer according to the

terms of sale
  Fulfillment systems activate the ad on the

appropriate pages, and acknowledge having
done so

Use Case – Purchase an Ad

  Tracker to Fulfillment
-  When the rep presses “submit” in Tracker

an empty shell of a “new inventory”
message is sent to the bus.

-  This shell is routed to a synchronous web
service by the ESB to retrieve order
details from the Tracker DB and flesh out
the internal XML message

-  The reply is forwarded to a content based
routing service that routes it to the
appropriate message flow for its product

Use Case – Purchase an Ad

  Example product message flow – new on
all pages for a specific geographic region

-  Message is replicated and sent to a
queue for each major component system
of findlaw.com

  Lawyer directory
  Public channel
  Etc.

-  Each system handles its message and
returns an acknowledgement message

Use Case – Purchase an Ad

  Acknowledgement
-  All acknowledgement messages are of

the same format, and are routed to the
business systems data center

-  A JMS consumer consumes the message
and updates the Tracker DB with details
of which system fulfilled which products
at which times.

Use Revision Control

  Always keep your current configuration
under revision control.

  The last thing you want if the bus hardware
fails catastrophically is to try to figure out
what all the routes were and the destination
names were while you're recovering
everything else.

JNDI

  Use it
  In a properly implemented ESB it allows clients to

identify themselves by name and have all of their
connection parameters set appropriately

  Removes concern about destination names and
connection settings from the application code

  Allows these settings to be updated dynamically,
without re-releasing the app

Gotchas

  Watch out for slow/offline consumers
-  Will exhaust resources, disrupt reliable

delivery
  A good diagramming tool is invaluable
  An ESB with auto-diagramming functionality is

even better
-  Diagrams won't go out of date

  Durable Subscriptions can cause issues if clients
don't properly reconnect

-  New DS for every name they connect with

Politics

  The overall system is much more flexible
and manageable than individual apps
directly connecting, but...

  It can be hard to convince development
groups of this when they're focused on their
own app, and it only has to talk to one
other app.

Additional Reading

  Progress Software's Sonic ESB site has
some good white papers

  Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging
Solutions by Gregor Hohpe and Bobby
Woolf

