Git & Mercurial: Distributed
Configuration Management

CSCI 5828

Foundations of Software Engineering

2010-03-19

Dmitry Duplaykin | Paul Madden

Overview

@ What is configuration management?
@ A brief history of CM systems

@ State of the art: Subversion

@ Intro to distributed CM

@ Git & Mercurial: Head-to-head comparison
with Subversion

@ Tips and Summary

What is configuration management?

@ A number of aliases:

2 Pilone & Miles call it version control:

“...a tool (usually a piece of software) that will keep
track of changes to your files and help you coordinate
different developers working on different parts of your
system at the same time.”

@ Also known as revision control (e.g. rcs = Revision
Control System), or source code management (e.g.
http://git-scm.com).

What is configuration management?

@ Typically offers features allowing:
@ Code check-out / check-in
@ Branching / Merging
@ Tagging
@ Recovery from mistakes
@ Display of specific code changes
@ Review of historical metadata

@ Two architectural flavors:
@ Centralized (CVS, Subversion)
@ Distributed (git, Mercurial)

A brief history of CM systems

@ 1972 — Source Code Control System (sccs)
@ The original. Proprietary Unix component.
@ 1982 — Revision Control System (rcs)
2 SCCS alternative. Like SCCS, works on single files (not
entire projects).
@ 1990 — Concurrent Versions System (cvs)

@ Built on and extended RCS: entire project tree support,
client/server network model, allowed concurrent work
without sccs/rcs-style locking by supporting merging.

@ 2000 — Subversion (svn)

@ A “better” CVS. In so many ways. Developer sought
CVS pros without its cons.

@ 2005 — Git & Mercurial: Distributed CMS
@ Many, many others, both free and proprietary

"L ™Y - LN ™Y - N T

State of the art: Subversion

@ Repository creation / maintenance with svnadmin tool
@ Either in client/server mode, or on local file:// URIs
@ Network access via
@ dedicated server
@ sshd
@ Apache
@ Choice of storage databases
@ svn's own fsfs (simple)
@ Berkeley DB (more features)

@ Offline diffs
@ Copies (tags & branches) “are cheap”

@ Updates stored as diffs & “skip deltas”
@ File reconstructed by sequentially applying diffs

e % iy e I NN Ty T

]

State of the art: Subversion

@ Client svn utility provides functions like:
@ checkout (co) — get files from repository
commit (ci) — upload changes to repository
copy (cp) — create branches / tags (among other uses)
revert — undo local changes to working copy

status — show what has changed in working copy or
what updates are waiting in the repository

@ update (up) — bring working copy up-to-date with repo
@ merge — e.g. bring branch up-to-date with trunk

@ diff — compare revisions to each other / working copy

@ log — show historical log messages

@ wrappers for system commands like Is, rm, mv, cp, etc.

& & & &

An svn workflow

svnadmin create repository (only server-side action)
svn import initial set of files into repository (creates r1)
svn co first working copy

modify existing files, create new ones

svn add new files to place under revision control
Svn status to see what has changed locally

svn revert to undo changes

svn ci new and changed files (creates r2)

svn log to view log-message metadata

svn mv to rename, svn rm to delete files

svn ci these changes (creates r3)

svn co an older (r2) working copy

"L ™Y - "L ™Y - LA T

An svn workflow

@ svn diff r1 and r2 of modified file to see changes

@ change file in 2™ copy of head, svn ci, look for
changes in 1¥ copy of head, svn up.

@ svn cp to create a tagged revision
@ svn cp to create a branch

@ svn co branch, make two commits, svn merge onto
trunk, commit

Transition to distributed CM

@ Conceptual model looks like this

— Central Repository

hg push
hg pull

|' Joel's Repository —— |' Rose's Repository —— |' Bob's Repository ——
hg com
hg up

— Joel's Warking — Rose's Working — Bob's Working
Directory Directory Directory
g o £]
=7 B =
o B g B 24 =] B
= 3 -

More complexity with git

Git Data Transport Commands

http:/ ostesle.com

commit -a :}
add (-u) :} commit :}

push

remote
index :
repository
pull or rebase
fetch

diff HEAD

diff

compare revert E‘
713

git background

@ Developed by Linus Torvalds in 2005

@ Linux Kernel team needed a new CM solution after
BitKeeper licensing changed

@ Design requirements:
2 fast

@ distributed (no central server, every copy has complete
development history in its .git directory)

@ secure (essentially impossible to “change history™)
@ Git differences entire project trees, not individual files

@ Revisions tracked with a SHA1 hash of information
from the current project state

@ Two storage locations:
@ changeable index
@ Immutable object database

Projects using git

@ Among many others:

Android jQuery
Debian Perl

Clojure Samba

Digg Ruby on Rails

@ And of course, famously, the Linux kernel. Linus
Torvalds developed Linux because Andrew
Tannenbaum wouldn't let him use Minix. He
developed git because BitKeeper revoked their free
license. Lesson? Linux Torvalds will eat your lunch.

Mercurial background

@ Started by Matt Mackall at the same time as git
@ Properties:

@ Written in Python

(95% in Python, core routines in C)
@ |t's distributed

@ Fast

@ Design features:
@ Uses SHA-1 hashes (like git)
@ Uses HTTP-based protocol

@ All above matches “Google land religion”
@ Will be referred to as hg, since commands start with it

Projects using Mercurial

@ The list is quite long, the most famous ones are:

Mozilla Symbian OS
OpendDK Go
OpenSolaris GNU Octave

OpenOffice.org Netbeans

@ The Python developers have announced that they will
switch from Subversion to Mercurial when
hgsubversion — an extension that allows using
Mercurial as a Subversion client and that has been
under development since September 2009 — is
released.

]

Head-to-head: Create a repository & initialize with files

svn
svnadmin create /repos/demo

mkdir -p import/branches import/tags import/trunk
cp source files/* import/trunk

svn import ./import file:///repos/demo

git

cd source files

git init

git add

git commit # editor will open for commit message

cd source files

hg init

hg add

hg commit -m “Initial version”

]

e % iy e I NN Ty T

Head-to-head: Get a working copy

In Subversion, we need to check out a working
copy from the repository...

svn
svn co file:///repos/demo/trunk wc

git
We already have a versioned working copy!

hg
We have it!

Head-to-head: Edit & add files, view changes

svn
svn add fruit

svn status # concise view

svn diff # show actual deltas

git

git add fruit

git status # concise view

git diff # show actual deltas

hg
hg add fruit
hg status # show changed, added, deleted files

hg diff # show actual deltas

Head-to-head: Revert changes

We've changed our minds about changing numbers...

svn
svn revert numbers # to checked-out revision

git
git checkout numbers # fetches from index
git checkout HEAD number # from database

hg

hg revert numbers

What if you had committed? Use this

hg rollback

It will help, but only if you haven't pushed
this change to central repository. Then you
have to think about it...

"L ™Y - "L ™Y - LA T

Head-to-head: Commit changes

Let's commit the changes we've decided to keep:

svn
svn ci
svn up # update working copy's revision info

git

git add letters fruit # stage to index
git commit # commit index to database
git commit -a # stage + commit in one

hg
hg add letters fruit
hg commit

log

svi
svn
SAVAS!
SAVAS!

git
git
git

hg

Head-to-head: View current status & log

commands show most recent actions first...

info # shows revision number
status # shows local changes
log # shows commit messages

status # shows changes & pending commit info
log # git doesn't have revision numbers

hg status # shows local changes
hg log # revision history
hg parent # changeset you're working from

Head-to-head: Remove and rename files

svn
svn rm fruit

svn mv numbers digits # an add + a delete
svn commit
svn up

git

git rm fruit

git mv numbers digits
git commit -a

hg
hg remove fruit
hg rename numbers digits

hg com -m “Remove and rename.”

Head-to-head: Get another project-head working copy

svn
cd ..
svn co file:///repos/demo/trunk wc2

git
cd
git clone source files wc2

hg
cd ..
hg clone source files wc2

Head-to-head: Working copy hierarchy

Create a chain of working copies, each of which
pushes its changes to the working copy from which
it was cloned.

svn
Impossible!

git

git clone wc2 wc3

“git push” in wc3 -> wc2

subsequent “git push” in wc2 -> source files

hg

hg clone source numbers crazy numbers

crazy numbers is a playground for experiments,
“hg push” by default will push changes

back to source numbers

"L ™Y - "L ™Y - LA T

Head-to-head: Moving in time

svn
svn co -r2 file:///repos/demo/trunk wc3
Creates duplicate working copy

git

git checkout <SHA1-ID>

git checkout HEAD” # set to parent
git checkout HEAD"" # or grandparent
git checkout master # return to latest

hg

hg update -r <n> # set working copy to revision n
hg update -r 103994

“...and get some really cool anti-gravity sci-
fi futuristic version of your source code”

(Joel Spolsky)

"L ™Y - LN ™Y - N T

Head-to-head: Show differences between 2 revisions

svn
svn diff -r2:3 file:///repos/demo
show deltas between revisions 2 and 3

git
git diff <SHA1l-ID-1> <SHAl1l-ID-2>

hg
hg diff -r 3:5 fruit

Head-to-head: Apply updates to working copy

svn
svn update # maybe deal with merge conflicts

git

git fetch origin # just get updates

git merge origin # apply updates

git pull # fetch and apply (merge) updates

hg

hg update # updates from local repo (or clone)
-0 -

hg pull # updates from central repo

hg update # apply updates

]

Head-to-head: Create tag / Retrieve tagged version

In svn, tags and branches are just copies, and
the difference is a matter of convention.

svn

svn copy file:///repos/demo/trunk \
file:///repos/demo/tags/my tag

svn co file:///repos/demo/tags/my tag

git

git tag -m “message” <tag name> <SHA1-ID>

git checkout <tag name>

git show <tag name> # show info about commit,
including “message”

hg
hg [-1] Version 1.1 # create tag locally/globally
hg update Version 1.1 # move to the tag

NI T Y AL TG "N TN

Head-to-head: Branching

svn

svn copy file:///repos/demo/trunk \
file:///repos/demo/branches/my branch

svn co file:///repos/demo/branches/my branch

git
git branch <branch name> <SHA1-ID> # create
git checkout <branch name> # switch to branch

hg
Branch?
In Mercurial land it's another repository

hg clone source numbers call it branch if U want

Head-to-head: Apply changes from branch onto trunk

svn
svn merge -r3:6 \
file:///repos/demo/branches/my branch

git
git merge [head | SHA1-ID]
git pull . [head]

hg

Continuing previous example:

Apply to local repository in /source numbers
/call if branch if U want> hg push

Or straight to central

/call if branch if U want> hg push
http://user.host.com:8000/

e % iy e S L ey LR

@ Commit often

2 Unlike with Subversion, nobody sees your commits until
you push them to a central repository

@ Use the index as your staging area

2 Undo changes without creating log history or new
commit IDS

2 git diff no longer shows deltas for items git add'ed to the
index (git diff —cached shows those)

@ Use tags

Unlike with Subversion, tags can apply to multiple
commits, and a commit can have multiple tags

2 Better than remembering (or looking up) SHA1 hashes!

@ A simple git workflow may look like this:

@ Coding, file operations, etc.
@ git status # to see what's changed
@ git diff [file] # to see change details

144

@ git commit -a -m “message” # to commit

@ Lots of powerful, advanced operations are available.

@ Joel Spolsky, who looks like a big fan of hg, teaches this:
@ Feel free to branch: It's pain-free

@ Mercurial is better than Subversion, so use it in your
team

@ Use it if you working by yourself
2 Do everything the “Mercurial way”
@ “Subversion Story #17:

@ Six programmers around a single computer working for
two weeks trying to manually reapply every single bug
fix from the stable build back into the development build

§ o -: . '.- s 2 » j ol !- i '.- B » § o !-

@ Workflow with Mercurial should look like this:
1. Get the latest version that everyone is working off of:
hg pull
hg up
2. Hack a bunch
3. Commit OFTEN locally

4. Repeat 2-3 until you're ready to share:
hg pull # to get others' changes (if any)

hg merge # better test after this
hg commit # save your changes
hg push # finally share

S L ey LR

Epilogue

“And here is the most important point, indeed, the
most important thing that we’ve learned about
developer productivity in a decade. It’'s so important
that it merits a place as the very last opinion piece
that | write, so if you only remember one thing,
remember this:

[Distributed revision control] is too important to miss
out on. This is possibly the biggest advance in
software development technology in the ten years I've
been writing articles here.”

(Joel Spolsky, March 17, 2010)

Acknowledgements & References

Head First Software Development, Dan Pilone & Russ Miles, O'Reilly Media
http://cssc.sourceforge.net/old-cyclic/sccs.html
http://www.cs.purdue.edu/homes/trinkle/RCS/
http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas
http://www.eecs.harvard.edu/~cduan/technical/git/git-1.shtml
http://hginit.com/index.html

http://mercurial.selenic.com/guide/

http://www.versioncontrolblog.com/2007/06/26/video-bryan-osullivan-
mercurial-project/

http://code.google.com/events/io/2009/sessions/MercurialBigTable.html
Wikipedia

"L ™Y - LN ™Y - "N,

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

