
Grand Central
Dispatch

Sri Teja Basava
CSCI 5528: Foundations of Software Engineering

Spring ’10

1

New Technologies in Snow Leopard

2

Grand Central Dispatch

• An Apple technology to optimize application
support for systems with multicore processors

• Released with Mac OS X Snow Leopard (v10.6)

• Shifts responsibility for managing threads and their
execution from applications to the operating
system

3

Grand Central Dispatch

• Provides a new programming model consisting of
blocks and queues

• GCD consists of a set of extensions to the C
language, an API, and a runtime engine

• Apple released the source code for libdispatch, the
library providing the implementation of GCD’s
services, under the Apache License on September
10, 2009

4

Traditional Approach
• To create an efficient application for multi-core

using threads, a programmer must

• Break each logical task down to a single thread

• Lock data that can be modified by two or more threads at the same time

• Implement a thread pool with as many threads as there are available
cores

• Hope that no other applications are using the processor cores

5

GCD Approach
• To create an efficient application for multi-core

using GCD, a programmer needs to

• Identify units of work (think tasks) and describe them using blocks

• Assign blocks to different queues based on how they need to be
executed

• No need to worry about threads, thread
managers, or locking data!

6

Benefits
• Improved responsiveness

• Dynamic scaling

• Better processor utilization

• Smaller & cleaner code

7

Block Objects
• An extension to C, C++, and Objective-C

• Allow programmers to define self-contained units
of work

• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies

• Internally implemented as a function pointer plus
context data and optional support routines

8

Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies

9

void (^blk)(void);
!
blk = ^{ printf("Hello World!\n"); };
!
blk(); /* prints Hello World! */

Example 1

Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies

10

int (^sum)(int, int);
!
sum = ^(int x, int y){ return x + y; };
!
printf("%d\n", sum(4, 5)); /* prints 9 */

Example 2

The compiler infers the return type of the block literal!

Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies

11

int (^addtovar)(int);
int var = 5;
!
addtovar = ^(int x){ return x + var; };
!
var = 6;
!
printf("%d\n", addtovar(4)); /* prints 9 */

Example 3

The block captures a read-only copy of var.

Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies

12

int (^addtovar)(int);
__block int var = 5;
!
addtovar = ^(int x){ return x + var; };
!
var = 6;
!
printf("%d\n", addtovar(4)); /* prints 10 */

Example 4

__block storage type enable var to be edited inside the body.

Dispatch Queues
• Blocks are scheduled for execution by placing

them on various system- or user-defined dispatch
queues

• Blocks are added and removed from queues using
atomic operations

• 3 types of dispatch queues

• Global concurrent queues

• Private serial queues

• Main queue

13

Global Queues
• GCD provides a set of global concurrent queues

to each process

• Each queue has an associated priority

• Each queue is associated with a pool of threads,
created as needed based on the work to be done
and the load on the rest of the operating system

14

Global Queues
• For each global concurrent queue with blocks

• GCD searches for an available thread at the appropriate priority

• If a thread is found, GCD dequeues a block (on a FIFO basis) and assigns
it for execution on the thread

• When the thread completes the work and becomes available, GCD
dequeues another block (if available) for execution on the thread

15

Global Queues

16

Example 4

dispatch_async enqueues the specified block on the default queue and
returns immediately.

dispatch_queue_t q_default;

/* get default queue */
q_default = dispatch_get_global_queue(0, 0);
!
dispatch_async(q_default, ^{ work(); });

Global Queues

17

Example 5

dispatch_apply can be used to parallelize for loops. It is synchronous.

#define COUNT 128
__block double result[COUNT];
dispatch_apply(COUNT, q_default, ^(size_t i) {
! result[i] = complex_calculation(i);
});
double sum = 0;
for (int i=0; i < COUNT; i++) sum += result[i];

Private Queues
• Programmers can create their own private serial

queues to serialize access to data structures

• Blocks in a private queue are executed one after
another, never concurrently

• Each private queue has an associated target global
concurrent queue, initially set to the default queue

18

“islands of serialization in a sea of concurrency”

Private Queues
• When a developer adds a block to an empty serial

queue

• The private queue is added to the target queue

• The private queue is treated in the same way as blocks added directly to
the the target queue; it is executed using the same policy and
mechanism as these blocks

• When the private queue is executed, it dequeues each block (on a FIFO
basis) and executes them one after another

19

“islands of serialization in a sea of concurrency”

Private Queues

20

Example 6

The private queue q_sum is used to serialize access to shared variable sum.

#define COUNT 128
__block double sum = 0;
dispatch_queue_t q_sum = dispatch_queue_create("com.example.sum", NULL);
dispatch_apply(COUNT, q_default, ^(size_t i){
! double x = complex_calculation(i);
! dispatch_async(q_sum, ^{ sum += x; });
});
dispatch_release(q_sum);

“islands of serialization in a sea of concurrency”

Main Queue
• Associated with the main thread of every process

is a unique, well-known main-queue

• Main queue is always serial

• Typically associated with CFRunLoop (for Core
Foundation) or NSRunLoop (for Cocoa) on the
main thread. Both must drain the main queue at
the end of their work cycles.

21

Event Sources
• Programmers can assign blocks as handlers to

event sources such as timers, signals, file
descriptors and network sockets

• When an event triggers, GCD schedules the
associated handler on a queue if it is not currently
running. GCD will coalesce pending events if it is.

• The handler is never run more than once at a time

22

Example
• Algorithm for computing approximate value of PI

• Multi-threaded implementation using pthreads (shown in class before)

• Multi-threaded implementation using GCB

23

Example
• Compiled using gcc -O3

• Runtime measurement using time utility

24

real 0m9.454s
user 0m17.976s
sys 0m0.041s

real 0m10.642s
user 0m20.479s
sys 0m0.036s

pthread GCD

Questions?

25

