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New Technologies in Snow Leopard
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Grand Central Dispatch

• An Apple technology to optimize application 
support for systems with multicore processors

• Released with Mac OS X Snow Leopard (v10.6)

• Shifts responsibility for managing threads and their 
execution from applications to the operating 
system
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Grand Central Dispatch

• Provides a new programming model consisting of 
blocks and queues

• GCD consists of a set of extensions to the C 
language, an API, and a runtime engine

• Apple released the source code for libdispatch, the 
library providing the implementation of GCD’s 
services, under the Apache License on September 
10, 2009
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Traditional Approach
• To create an efficient application for multi-core 

using threads, a programmer must

• Break each logical task down to a single thread

• Lock data that can be modified by two or more threads at the same time

• Implement a thread pool with as many threads as there are available 
cores

• Hope that no other applications are using the processor cores
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GCD Approach
• To create an efficient application for multi-core 

using GCD, a programmer needs to

• Identify units of work (think tasks) and describe them using blocks

• Assign blocks to different queues based on how they need to be 
executed

• No need to worry about threads, thread 
managers, or locking data!
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Benefits
• Improved responsiveness

• Dynamic scaling

• Better processor utilization

• Smaller & cleaner code
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Block Objects
• An extension to C, C++, and Objective-C

• Allow programmers to define self-contained units 
of work

• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies

• Internally implemented as a function pointer plus 
context data and optional support routines
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Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies
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void (^blk)(void);
!
blk = ^{ printf("Hello World!\n"); };
!
blk(); /* prints Hello World! */

Example 1



Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies
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int (^sum)(int, int);
!
sum = ^(int x, int y){ return x + y; };
!
printf("%d\n", sum(4, 5)); /* prints 9 */

Example 2

The compiler infers the return type of the block literal!



Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies
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int (^addtovar)(int);
int var = 5;
!
addtovar = ^(int x){ return x + var; };
!
var = 6;
!
printf("%d\n", addtovar(4)); /* prints 9 */

Example 3

The block captures a read-only copy of var.



Block Objects
• Similar to function pointers, but far more powerful

• Block objects can be defined inline, as “anonymous functions”

• Block objects can refer to variables defined outside of their bodies
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int (^addtovar)(int);
__block int var = 5;
!
addtovar = ^(int x){ return x + var; };
!
var = 6;
!
printf("%d\n", addtovar(4)); /* prints 10 */

Example 4

__block storage type enable var to be edited inside the body.



Dispatch Queues
• Blocks are scheduled for execution by placing 

them on various system- or user-defined dispatch 
queues

• Blocks are added and removed from queues using 
atomic operations

• 3 types of dispatch queues

• Global concurrent queues

• Private serial queues

• Main queue
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Global Queues
• GCD provides a set of global concurrent queues 

to each process

• Each queue has an associated priority

• Each queue is associated with a pool of threads, 
created as needed based on the work to be done 
and the load on the rest of the operating system
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Global Queues
• For each global concurrent queue with blocks

• GCD searches for an available thread at the appropriate priority

• If a thread is found, GCD dequeues a block (on a FIFO basis) and assigns 
it for execution on the thread

• When the thread completes the work and becomes available, GCD 
dequeues another block (if available) for execution on the thread
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Global Queues
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Example 4

dispatch_async enqueues the specified block on the default queue and 
returns immediately.

dispatch_queue_t q_default;

/* get default queue */
q_default = dispatch_get_global_queue(0, 0); 
!
dispatch_async(q_default, ^{ work(); });



Global Queues
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Example 5

dispatch_apply can be used to parallelize for loops.  It is synchronous.

#define COUNT 128
__block double result[COUNT];
dispatch_apply(COUNT, q_default, ^(size_t i) {
! result[i] = complex_calculation(i);
});
double sum = 0;
for (int i=0; i < COUNT; i++) sum += result[i];



Private Queues
• Programmers can create their own private serial 

queues to serialize access to data structures

• Blocks in a private queue are executed one after 
another, never concurrently

• Each private queue has an associated target global 
concurrent queue, initially set to the default queue
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“islands of serialization in a sea of concurrency”



Private Queues
• When a developer adds a block to an empty serial 

queue

• The private queue is added to the target queue

• The private queue is treated in the same way as blocks added directly to 
the the target queue;  it is executed using the same policy and 
mechanism as these blocks

• When the private queue is executed, it dequeues each block (on a FIFO 
basis) and executes them one after another 
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“islands of serialization in a sea of concurrency”



Private Queues
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Example 6

The private queue q_sum is used to serialize access to shared variable sum.

#define COUNT 128
__block double sum = 0;
dispatch_queue_t q_sum = dispatch_queue_create("com.example.sum", NULL);
dispatch_apply(COUNT, q_default, ^(size_t i){
! double x = complex_calculation(i);
! dispatch_async(q_sum, ^{ sum += x; });
});
dispatch_release(q_sum);

“islands of serialization in a sea of concurrency”



Main Queue
• Associated with the main thread of every process 

is a unique, well-known main-queue

• Main queue is always serial

• Typically associated with CFRunLoop (for Core 
Foundation) or NSRunLoop (for Cocoa) on the 
main thread.  Both must drain the main queue at 
the end of their work cycles.
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Event Sources
• Programmers can assign blocks as handlers to 

event sources such as timers, signals, file 
descriptors and network sockets

• When an event triggers, GCD schedules the 
associated handler on a queue if it is not currently 
running.  GCD will coalesce pending events if it is.

• The handler is never run more than once at a time
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Example
• Algorithm for computing approximate value of PI

• Multi-threaded implementation using pthreads (shown in class before)

• Multi-threaded implementation using GCB
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Example
• Compiled using gcc -O3

• Runtime measurement using time utility
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real 0m9.454s
user 0m17.976s
sys 0m0.041s

real 0m10.642s
user 0m20.479s
sys 0m0.036s

pthread GCD



Questions?
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