
Chenyu Zheng

CSCI 5828 – Spring 2010
Prof. Kenneth M. Anderson

University of Colorado at Boulder

 Actuality Introduction
 Concurrency framework in the 2010 new C++ standard

 History of multi-threading in C++

 Feature demonstration
 Comparison between previous concurrency solutions and current concurrency support

 Framework Component Analysis
 Thread Management

 Data Sharing

 Synchronization of Concurrent Operations

 The New C++ Memory Model

 Operations on Atomic Types

 11 years after the original C++ Standard (published in 1998), the C++
Standards committee is giving the language and its supporting library a
major overhaul.

 The C++0x is due to be published at the end of 2010 and will bring with it a
whole swathe of changes that will make working with C++ easier and more
productive.

 One of the most significant new features: the support of multi-threaded
programs
 allow us to write multi-threaded C++ programs without relying on platform-specific

extensions

=>

 write portable multi-threaded code with guaranteed behavior

 The 1998 C++ Standard
 Does not acknowledge the existence of threads
 The memory model is not formally defined
=>
 Can't write multi-threaded applications without compiler-specific

extensions

 Solutions
 compiler vendors add extensions to the language themselves

 C APIs led compiler vendors to support multi-threading with various
platform specific extensions.
 POSIX C Standard
 Microsoft Windows API

 More Advanced Solutions
 Accumulate sets of C++ classes that wrap the underlying

platform specific APIs to provide higher level facilities
for multi-threading that simplify the tasks
 Application frameworks such as MFC

 General-purpose C++ libraries such as Boost and ACE

 Common design among these solutions
 the use of the Resource Acquisition Is Initialization

(RAII) idiom with locks to ensure that mutexes are
unlocked when the relevant scope is exited

 Lack of a formal multi-threading-aware memory model and
standard library support means
 Development has to

 allow the use of the corresponding C API for the platform
 ensure the C++ runtime library works in the presence of multiple

threads
 Optimization is limited when

 trying to gain higher performance by using knowledge of the processor hardware
 writing cross-platform code where the actual behavior of the compilers varies

between platforms

 Although not perfect, we survived, WHY?
 a large number of multi-threaded C++ programs have been

written and because of the development of the compilers and
processor

 Concurrency Support in the New Standard
 Brand new thread-aware memory model
 Extended standard library support

managing threads
 protecting shared data
 synchronizing operations between threads
 low-level atomic operations
=>
Provides both integrated high-level facilities and

sufficient low-level facilities

 Abstraction Penalty
 Costs associated with using any high-level facilities compared to using

the underlying low-level facilities directly

 Not Really
 Although sometimes the use of high-level facilities does comes with a

performance cost due to the additional code that must be executed
 in general the cost is no higher than would be incurred by writing equivalent

functionality by hand
 the compiler may well inline much of the additional code anyway

 And Also Design…
 Even if profiling does demonstrate that the bottleneck is in the C++

Standard Library facilities, it may be due to poor application design
rather than a poor library implementation

 Before we go to the component analysis

 the functions and classes for managing threads
are declared in <thread>

 Initial Function
 Every C++ program has at least one thread, which is

started by the C++ runtime: initial function: main()

 std::thread object named t has the new function
hello() as its initial function

 Thread Management

 Data Sharing

 Synchronization of Concurrent Operations

 The New C++ Memory Model

 Operations on Atomic Types

 Using function
 void-returning function that takes no parameters

 Using class
 Pass an instance of a class with a function call

operator to the std::thread constructor

 Attention: scope and lifetime
 Since the callable object supplied to the constructor is copied into the thread, the original

object can be destroyed immediately.

 However, if the object contains any pointers or references, it is important to ensure that
those pointers and references remain valid as long as they may be accessed from the new
thread

 join(): block and wait
 Inserting a call to std::thread instance.join() before

the to ensure that the thread was finished before
the closing brace of the function body would
therefore be sufficient function was exited, and
thus before the local variables were destroyed

 This code ensures that a thread with access to local state is finished before
the function exits whether the function exits
 normally (#1)
 by an exception (#2)

 Standard Resource Acquisition Is Initialization
idiom (RAII)

 joinable()
 tests to see if the std::thread object is joinable before calling join().
 join() can only be called once for a given thread of execution
 it would therefore be a mistake to do so if the thread had already

been joined with

 =delete
 The copy constructor and copy-assignment operator are marked
 ensure they are not automatically provided by the compiler
 copyed or assigned objects probably would outlive the scope of the

thread it was joining

 detach() member function of the std::thread
 Destroy std::thread object at the point where you wish

to detach the thread
 After the call completes

 the std::thread object is no longer associated with the actual
thread of execution

 no longer joinable

 Passing additional arguments to the std::thread
constructor
BY
Passing arguments to the callable object or
function

 The arguments are copied into internal storage,
where they can be accessed by the newly created
thread of execution, even if the corresponding
parameter in the function is expecting a reference.

 This code will invoke my_x.do_lengthy_work() on the new thread
 the third argument to the std::thread constructor will be the first argument

to the member function, and so forth

 #1: a new thread is started and associated with t1
 #2: ownership of some_function is transferred over to t2 when t2 is

constructed, t1 no longer has an associated thread of execution
 #3: a new thread is started, and associated with t1

 Ownership could also be transferred into a function

 std::thread::hardware_concurrency()
 Returns an indication of the number of threads that can

truly run concurrently for a given execution of a program.
 On a multi-core system it might be the number of CPU

cores.
 Only a hint: might return 0 if this information is not

available

 std::thread:: get_id()
 Returns the identifier for a thread
 If the std::thread object doesn't have an associated thread of

execution, returns a default-constructed std::thread::id object,
which indicates “not any thread”.

 std::thread::id a, b; a == b
 True if: a and b represent the same thread

 True if: a and b are holding the “not any thread”
value

 False if: a and b represent different threads

 False if: a or b represents a thread and the
corresponding b or a is holding the “not any thread”
value

 C++ synchronization primitive: Mutexes
(named after mutual exclusion)
 they're not a silver bullet

 we should protect the right data

 we should avoid race conditions inherent in your
interfaces

 we should avoid deadlock inherent from the nature
of mutexes

 std::lock_guard<std::mutex> guard(some_mutex) in
add_to_list and list_contains functions means that the
accesses in these functions are mutually exclusive

 std::unique_lock
 does not always own the mutex that it is associated with
 you can pass std::adopt_lock as a second argument to

the constructor: have the lock object manage the lock
on a mutex

 you can also pass std::defer_lock as the second
argument to indicate that the mutex should remain
unlocked on construction, The lock can then be
acquired later by
 calling lock() on the std::unique_lock object
 passing the std::unique_lock object itself to std::lock()

 Usage
 deferred locking
 transferring mutex ownership between scopes

 #1: The function can transfer ownership directly into its own
process_data() std::unique_lock instance (#1),

 the call to do_something() can rely on the data being correctly
prepared without another thread altering the data in the mean time.

 Sometimes you don't just need to protect the
data, but to synchronize actions on separate
threads.

 Waiting for an Event: mutex + sleep

 #1 Unlock the mutex whilst we sleep, so another thread
can acquire it and set the flag

 #2 Sleep for 100ms
 #3 Lock the mutex again before we loop round to check

the flag

 two implementations of a condition variable:
std::condition_variable, and
std::condition_variable_any
 they need to work with a mutex in order to provide

appropriate synchronization
 the former is limited to working with std::mutex
 the latter can work with anything that meets minimal

criteria for being mutex-like
 there is the potential for additional costs in terms of size,

performance or operating system resources, so the latter
std::condition_variable should be preferred unless the
additional flexibility is required

 []{return !data_queue.empty();}: checks to see if
the data_queue is not empty (lambda function)

 data_cond.wait method: checks the condition
(by calling the lambda function), and returns if
it is satisfied.

 If the condition is not satisfied, it unlocks the
mutex and puts the thread in a “waiting” state

 One-off Events
 Suppose you're going on holiday abroad by plane,

fundamentally you're just waiting for one thing: the
signal that it's time to get on the plane. Not only that,
but a given flight only goes once

 Future
 C++ model of the one-off event.
 A future may have data associated with it.
 A thread can poll the future to see if the event has

occurred.
 Once an event has happened (and the future has

become ready), then the future cannot be reset.

 Two class templates: std::unique_future<> and
std::shared_future<>
 an instance of std::unique_future is the one and

only instance that refers to its associated event

 multiple instances of std::shared_future may refer to
the same event
 all the instances will of course become ready at the same

time,

 they may all access any data associated with the event

 All data in a C++ program is made up of objects
 The C++ Standard defines an object as “a region of

storage”, though it goes on to assign properties to
these objects, such as their type and lifetime

 Whatever its type, an object is stored in one or
more memory locations.

 Each such memory location is either an object (or
sub-object) of a scalar type, such as
 unsigned short
 my_class*
 a sequence of adjacent bit-fields

 Significance to Concurrency
 If there is no enforced ordering between two

accesses to a single memory location from separate
threads, these accesses is not atomic,

 if one or both accesses is a write, this is a data race,
and causes undefined behaviour

 Example
 The division of a struct into objects and memory

locations

 Goals of the Standards committee is that there shall be no
need for a lower-level language than C++

 The Standard atomic types can be found in the <cstdatomic>
header.
 All operations on such types are atomic
 Only operations on these types are atomic in the sense of the

language definition

 As well as the basic atomic types, the C++ Standard Library
also provides a set of typedefs for the atomic types
corresponding to the various non-atomic Standard Library
typedefs

 Each of the operations on the atomic types has an
optional memory ordering argument, three categories
 store operations

 can have memory_order_relaxed, memory_order_release or
memory_order_seq_cst ordering;

 load operations
 can have memory_order_relaxed, memory_order_consume,

memory_order_acquire or memory_order_seq_cst ordering;
 read-modify-write operations

 can have memory_order_relaxed, memory_order_consume,
memory_order_acquire, memory_order_release,
memory_order_acq_rel or memory_order_seq_cst ordering

 the default ordering for all operations is
memory_order_seq_cst.

 Actuality Introduction
 Concurrency framework in the 2010 new C++ standard

 History of multi-threading in C++

 Feature demonstration
 Comparison between previous concurrency solutions and current concurrency support

 Framework Component Analysis
 Thread Management

 Data Sharing

 Synchronization of Concurrent Operations

 The New C++ Memory Model

 Operations on Atomic Types

 Thank you 

