S Integration &
SYRICIE

idwell
Spring 2010
CSCI 5828

Continuous Integration &
Build Systems

Introduction

Automated Build Tools

Source Repositories

Continuous Integration

Organizing The Source Tree

Automated Tests & Continuous Integration
Continuous Integration Platforms
Continuous Integration In Action

Introduction

Continuous build systems are also referred to as
“continuous integration” or Cl systems.

Cl systems enable the continuous integration
process

Let's discuss some some fundamentals of
continuous integration before looking at Hudson
(a Cl system)

ated Build Tools

ools provides developers a way to
script the compilation of source code, thereby
removing the complexity of compiling and
packaging. Common build automation tools
iInclude make and ant.

Automated Build Tools

As with all processes that we put in place to
develop software, the process for building the
system from source should be repeatable.

Scripting builds with tools like make or ant will

produce a build process that is easily repeated by
individual developers.

Automated Build Tools

This is great! \WWe have a way to remove
complexity from compiling large software systems.

But how do we distribute the build script to
developers? What if it changes” Where do
developers even obtain the source that our build
script will compile?

Source Repositories

To solve these problems, we want to keep a
single copy of the source code and build script so
that we have a single repository for developers to
work from.

What if a large number of people need to make
changes to the source In this repository? How
should we handle conflicting changes in the
repository?

Source Repositories
VWe can manage access to the repository

through systems such as CVS, SVN, and
ClearCase.

These systems allow developers to “check out”
copies of the repository and manage modifications
to the repository so that conflicts are avoided.

Now we can ensure that everyone is seeing the
same source and that any changes made to the
source don't get lost.

A single source repository is a key aspect of
continuous integration.

We want our Cl system to build what is in the
source repository. Builds can be triggered by
check-ins or scheduled for regular execution.

Organizing The Source Tree

We want our builds to run quickly. Instead of
building one giant executable, it is a best
practice to organize the source so that the
application is composed of smaller
modules/sub-systems. This allows us to make
changes to modules and sub-systems and build
them quickly instead of waiting for the entire
system to build in a developer sandbox every
time we make a change

Continuous Integration

Repeatable processes are easily automated by
computers!

We have a single repository for our source and a
script for executing the build

We now have the ability to introduce software
that is capable of building our source as often as
we want and publishing our final product as often
as we want!

Continuous Integration Platforms

Enter the Cl system!

Cl systems provide a more sophisticated way of
managing builds from our source repository

These systems are more sophisticated than
simple cron jobs

Cl systems provide us an environment for
compiling, executing unit tests, and publishing the
finished product

Builds can be scheduled or done on-demand by
responding to changes in the source repository

All of this could theoretically be done from
somebody's sandbox, so why bother?

Continuous Integration Platforms

Processes that require a significant amount of human
iIntervention are error prone. We need to have the build
run perfectly EVERY time. In short, we need perfection!

Using a Cl system removes the human element from
our build process and moves our process that much
closer to perfection

The CI system should be a part of our life-cycle

What Is a Continuous Build
System?

Continuous build systems, also referred to as
continuous integration systems (Cl) automate
the process of compiling and packaging source
code. Cl systems allow builds to happen in a
single place where the whole team can get
quick feedback on whether the code in the
repository builds and unit tests are passing. ClI
systems also provide a way for the system to be
iInstalled after being built.

f Continuous Build
ystems

e Control
ontrol .NET
udson
Bamboo
Beebox
Apache Continuum

Tying It All Together

Now that we have a single source repository,
modularized our system appropriately, and have
introduced a CI| system to build our code and
execute test suites regularly, we now have the
foundations of continuous integration in place.

Continuous Build Systems In Action

While there are many other powerful Cl
platforms such as Cruise Control, as a case
study we will now look at Hudson in action
within HP. Within HP's ESS Software division
we employ Hudson as our continuous
integration platform.

Continuous Build Systems In Action

The software we develop (Insight Dynamics) is
delivered as a suite composed of smaller
products. We have decomposed our source
tree into small modules that can be built
individually.

Hudson builds each project in the suite using
Ant and allows us to manage our build
dependencies with lvy.

Not only does Hudson build our source and run
our test suites, it notifies us when builds fail and
publishes the test results.

Continuous Build Systems In Action

Our build environment makes use of the distributed build management
capabilities of Hudson. We run builds on Windows, HP-UX, and Linux Hudson
slaves so that we can build customized executables for Windows, HP-UX,
and Linux.

Developer Workstation

N\

vy Repository
\ / (Dependency Management
=

Slave Build Machines

Continuous Build Systems In Action

Here are some screenshots from Hudson. Hudson installs easily on Windows,
Linux, HP-UX, and a variety of other operating systems. It is implemented in
Java and is therefore platform independent. There are hundreds of plugins
available for Hudson. By default, Hudson comes with Ant, Maven, and CVS
plugins installed. Hudson can build projects written in virtually any language.
Development teams also have the flexibility to develop their own custom
Hudson plugins for further customizing their build process.

ontinuous Build Systems In Action

} http://localhost:8080/

il 1 ,: Inside a C# Program

Hudson
Hudson ENABLE AUTO REFRESH
madd description

1.":.‘ New Job

Manage Hudson o I
: s w Job | Last Success Last Failure Last Duration
ﬁ People | e . e : - i :
— Q - Testi 1day 1 hr (£1) N/A 0.42 sec @
= Build History | . .
o Icon: S ML w Description O
o . . 100 l Legend E for all m for failures 5 for just latest builds

_ Build Queus Build stability: No recent builds failed.

Mo builds in the queue.
Build Executor Status
| Status
1| Idle
2 Idle

Page generated: Mar 19, 2010 8:40:39 FPM Hud=son wer. 1.351

Continuous Build Systems In Action

Hudson

Hudson ENABLE AUTO REFRESH

& New Job Manage Hudson
4 Manage Hudson

Configure System
ﬁ People

Configure global settings and paths.

= Build History

Reload Configuration from Disk
Discard all the loaded data in memory and reload everything from file system. Useful when you modified config files directly on disk.

ﬁ' Install a= Windows Service

. Build Queue

s Manage Flugins
Mo builds in the gueue.

Add, remove, disable or enable plugins that can extend the functionality of Hudsan.
| Build Executor Status
| Status
1| Idle
2 | Idle

System Information
Displays various environmental information to assist trouble-shooting.

m

System Log
System log captures output from Javs.util . legging output related to Hudson.

Load Statistics
Check your resource utilization and see if you need more computers for vour builds,

Hudson CLI
Access/manage Hudson from your shell, or from your script.

Script Console
Executes arbitrary script for administration/trouble-shooting/diagnostics.

Manage Nodes
Add, remove, control and monitor the various nodes that Hudson runs jobs on.

Install as Windows Service
Installs Hud=son as a Windows service to this system, so that Hudson starts automatically when the machine boots.

Get Support Subscription
mmercial support subscription available from Sun Microsystems.

Continuous Build Systems In Action

Hudson

Hudson = nodes

ENABLE AUTO REFRESE

“‘ Back to Dashboard s Mame | Response Time Free Swap Space Free Disk Space Free Temp Space Architecture Clock Difference
B new Node | [— N/A N/A N/A N/A Windows 7 (amd64) N/A t(/

’- Configure ' g
Refresh status

Build Queue

”Nulbui.ll:ls in the gqueue.
Build Executor Status

. # - Stafus
N 1 - Idle -
2 1dle

Page generated: Mar 19, 2010 8:43:38 PM Hudson wer. 1.351

Resources

tion:
inuouslintegration.html

udson for a test drive before installing!):

p://en.wikipedia.org/wiki/Continuous_integration

“Continuous Integration in the cloud with Hudson”:
http://java.sun.com/javaone/2009/articles/gen_hudson.jsp

Official Hudon blog:
http://blog.hudson-ci.org/

http://martinfowler.com/articles/continuousIntegration.html
http://hudson-ci.org/
http://en.wikipedia.org/wiki/Continuous_integration
http://java.sun.com/javaone/2009/articles/gen_hudson.jsp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

