
  

Continuous Integration &
 Build Systems

Ryan Tidwell
Spring 2010
CSCI 5828



  

Continuous Integration &
 Build Systems

Introduction
Automated Build Tools
Source Repositories
Continuous Integration
Organizing The Source Tree
Automated Tests & Continuous Integration
Continuous Integration Platforms
Continuous Integration In Action



  

Introduction

 Continuous build systems are also referred to as 
“continuous integration” or CI systems.
 CI systems enable the continuous integration 
process
 Let's discuss some some fundamentals of 
continuous integration before looking at Hudson 
(a CI system)



  

Automated Build Tools

This class of tools provides developers a way to 
script the compilation of source code, thereby 
removing the complexity of compiling and 
packaging.  Common build automation tools 
include make and ant.



  

Automated Build Tools

 As with all processes that we put in place to 
develop software, the process for building the 
system from source should be repeatable.
 Scripting builds with tools like make or ant will 
produce a build process that is easily repeated by 
individual developers.



  

Automated Build Tools

 This is great! We have a way to remove 
complexity from compiling large software systems.
 But how do we distribute the build script to 
developers? What if it changes? Where do 
developers even obtain the source that our build 
script will compile?



  

Source Repositories

 To solve these problems, we want to keep a 
single copy of the source code and build script so 
that we have a single repository for developers to 
work from.
 What if a large number of people need to make 
changes to the source in this repository? How 
should we handle conflicting changes in the 
repository?



  

Source Repositories
 We can manage access to the repository 
through systems such as CVS, SVN, and 
ClearCase.
 These systems allow developers to “check out” 
copies of the repository and manage modifications 
to the repository so that conflicts are avoided.
 Now we can ensure that everyone is seeing the 
same source and that any changes made to the 
source don't get lost.
 A single source repository is a key aspect of 
continuous integration.
 We want our CI system to build what is in the 
source repository. Builds can be triggered by 
check-ins or scheduled for regular execution.



  

Organizing The Source Tree

We want our builds to run quickly.  Instead of 
building one giant executable, it is a best 
practice to organize the source so that the 
application is composed of smaller 
modules/sub-systems.  This allows us to make 
changes to modules and sub-systems and build 
them quickly instead of waiting for the entire 
system to build in a developer sandbox every 
time we make a change



  

Continuous Integration

 Repeatable processes are easily automated by 
computers!
 We have a single repository for our source and a 
script for executing the build
 We now have the ability to introduce software 
that is capable of building our source as often as 
we want and publishing our final product as often 
as we want!



  

Continuous Integration Platforms
 Enter the CI system!
 CI systems provide a more sophisticated way of 
managing builds from our source repository
 These systems are more sophisticated than 
simple cron jobs
 CI systems provide us an environment for 
compiling, executing unit tests, and publishing the 
finished product
 Builds can be scheduled or done on-demand by 
responding to changes in the source repository
 All of this could theoretically be done from 
somebody's sandbox, so why bother? 



  

Continuous Integration Platforms

 Processes that require a significant amount of human 
intervention are error prone. We need to have the build 
run perfectly EVERY time. In short, we need perfection!
 Using a CI system removes the human element from 
our build process and moves our process that much 
closer to perfection
 The CI system should be a part of our life-cycle



  

What Is a Continuous Build 
System?

Continuous build systems, also referred to as 
continuous integration systems (CI) automate 
the process of compiling and packaging source 
code.  CI systems allow builds to happen in a 
single place where the whole team can get 
quick feedback on whether the code in the 
repository builds and unit tests are passing.  CI 
systems also provide a way for the system to be 
installed after being built.



  

Examples Of Continuous Build 
Systems

Cruise Control
Cruise Control .NET

Hudson
Bamboo
Beebox

Apache Continuum



  

Tying It All Together

 Now that we have a single source repository, 
modularized our system appropriately, and have 
introduced a CI system to build our code and 
execute test suites regularly, we now have the 
foundations of continuous integration in place.



  

Continuous Build Systems In Action

While there are many other powerful CI 
platforms such as Cruise Control, as a case 
study we will now look at Hudson in action 
within HP. Within HP's ESS Software division 
we employ Hudson as our continuous 
integration platform.



  

The software we develop (Insight Dynamics) is 
delivered as a suite composed of smaller 
products.  We have decomposed our source 
tree into small modules that can be built 
individually.  

Hudson builds each project in the suite using 
Ant and allows us to manage our build 
dependencies with Ivy.

Not only does Hudson build our source and run 
our test suites, it notifies us when builds fail and 
publishes the test results.

Continuous Build Systems In Action



  

Continuous Build Systems In Action
Our build environment makes use of the distributed build management 
capabilities of Hudson. We run builds on Windows, HP-UX, and Linux Hudson 
slaves so that we can build customized executables for Windows, HP-UX, 
and Linux.



  

Continuous Build Systems In Action
Here are some screenshots from Hudson.  Hudson installs easily on Windows,
Linux, HP-UX, and a variety of other operating systems.  It is implemented in 
Java and is therefore platform independent.  There are hundreds of plugins
available for Hudson.  By default, Hudson comes with Ant, Maven, and CVS
plugins installed.  Hudson can build projects written in virtually any language.
Development teams also have the flexibility to develop their own custom
Hudson plugins for further customizing their build process.



  

Continuous Build Systems In Action



  

Continuous Build Systems In Action



  

Continuous Build Systems In Action



  

Other Resources

Martin Fowler on continuous integration:
http://martinfowler.com/articles/continuousIntegration.html

Hudson Home (Allows you to take Hudson for a test drive before installing!):
http://hudson-ci.org/

Wikipedia:
http://en.wikipedia.org/wiki/Continuous_integration

“Continuous Integration in the cloud with Hudson”:
http://java.sun.com/javaone/2009/articles/gen_hudson.jsp

Official Hudon blog:
http://blog.hudson-ci.org/

http://martinfowler.com/articles/continuousIntegration.html
http://hudson-ci.org/
http://en.wikipedia.org/wiki/Continuous_integration
http://java.sun.com/javaone/2009/articles/gen_hudson.jsp

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

