
Python Multiprocessing

Module

Ali Alzabarah

4

3

2

1 Introduction

Python and concurrency

Multiprocessing VS Threading

Multiprocessing module

8

7

6

5 Pool of worker

Distributed concurrency

Credit when credit is due

References

Introduction

• Thread : is a thread of execution in a

program. Aka, lightweight process.

• Process : is an instance of a

computer program that is being

executed.

• Thread share the memory and state

of the parent, process share nothing.

• Process use inter-process

communication to communicate,

thread do not.

Thread

Threading

Multiprocessing

Python and Concurrency

• Python has three concurrency

modules :

Python and Concurrency

– Thread :

• Provides low-level primitives for

working with multiple threads.

• Python first implementation of thread,

it is old.

• Not included in Python 3000 .

– Threading :

• Construct higher-level threading

interface on top of thread module.

Python and Concurrency

– Multiprocessing :

• Supports spawning process.

• Offer local and remote concurrency

• New in python 2.6.

• Solves the issue in the threading

module.

Python and Concurrency

• Why new module?

– Python Global Interpreter Lock, GIL,

limitation prevents a true parallelism

in multi processors machines.

• What is GIL ?

– Lock which must be acquired for a thread

to enter the interpreter‟s space.

– Lock assures that only one thread

executes in the cPython VM at a time.

Python and Concurrency

• How GIL works ?

– It controls the transfer of control between

threads. Python interpreter determine how

long a thread‟s turn runs, NOT the

hardware timer.

– Python uses the OS threads as a base but

python itself control the transfer of control

between threads.

• For the above reason, true parallelism

won‟t occur with Threading module.

• So, They came up with

Multiprocessing to solve this issue.

Python and Concurrency

• “Nevertheless, you„re right the GIL is

not as bad as you would initially think:

you just have to undo the

brainwashing you got from Windows

and Java proponents who seem to

consider threads as the only way to

approach concurrent activities “,

Guido van Rossum.

Multiprocessing VS Threading

• Let‟s see the problem in action. I

analyzed the code that was written by

Jesse Noller in depth. I used cProfile

and pstats modules to gain an idea of

how the code was handled by Python.

• I‟m testing the program in Quad-Core

machine, 8 CPU‟s.

Multiprocessing VS Threading

• Single Thread :

– The program took 52.810 CPU

seconds.

• Most of the time, it was executing

isPrime, sum_primes functions.

Multiprocessing VS Threading

Multiprocessing VS Threading

• Multi Threads :

– The program took 59.337 CPU

seconds. This is more than what it

took the single version of the same

program !

• Most of the time was used by a built-in

method acquire !

Multiprocessing VS Threading

Multiprocessing VS Threading

• Wait ! Built-in method ? Threading

acquire method was not in the code.

Multiprocessing VS Threading

• Built-in acquire ! This must be the

GIL.

• Multi processes :

– Took only 11.968 seconds. ~ 5 times

faster !

• Most of the time was spent in waiting

for other processes to finish.

Multiprocessing VS Threading

Multiprocessing VS Threading

• So, How does multiprocessing

module solve the problem ?

– It uses subprocesses instead of

thread.

– Therefore, it allow the programmer to

fully leverage multiple processors on

a given machine.

Multiprocessing VS Threading

• Differences between threading /

multiprocessing syntax ? Almost the same.

– Threading :

• Thread(target=do_work,args=(work_queue,))

– Multiprocessing:

• Process(target=do_work,args=(work_queue,))

• I‟m not going to cover all the functionality

that multiprocessing module provides but I

will discuss what is new. Any functionality

that threading module provides is also in the

multiprocessing module.

Multiprocessing Module

• Remember :

– Processes share nothing.

– Processes communicate over inter-

process communication channel .

• This was not an issue with Threading

module.

• Python developers had to find a way

for processes to communicate and

share date. Otherwise, The module

will not be as efficient as it is.

Communication

channels

Queues Pipes

Exchange Object between Processes

• Multiprocessing module has two

communication channels :

Exchange Object between Processes

• Queues :

– Returns a process shared queue.

– Any pickle-able object can pass

through it.

– Thread and process safe.

• Pipes :

– Returns a pair of connection objects

connect by a pipe.

– Every object has send/recv methods

that are used in the communication

between processes.

Exchange Object between Processes

• let‟s see an example :

– Queues simple example :

• The program creates two queues :

– Tasks : queue that has range of int.

– Results : queue that is empty. It is used to

store results.

• Then creates n workers, each worker

get a data , number, from shared

queue, multiply it by 2 and store it in

the result queue.

Exchange Object between Processes

Exchange Object between Processes

• Observation :

– Result is not in order even if our

tasks’ queue was in order. This is

because the program run in

parallel.

– Queue.get() return the data to the

worker and delete it.

• Part of the output :

Shared data

Shared

memory

Server

process

Sharing state between

processes

• Multiprocessing module has two

ways to share state between

processes :

• Shared memory :

– Python provide two ways for the

data to be stored in a shared

memory map:

• Value :

– The return value is a synchronized

wrapper for the object.

• Array :

– The return value is a synchronized

wrapper for the array.

Sharing state between processes

• Server process:

– A Manager object control a server

process that holds python objects

and allow other process to

manipulate them.

• What is Manager ?

– Controls server process which

manages shared object.

– It make sure the shared object get

updated in all processes when anyone

modifies it.

Sharing state between processes

• Let‟s see an example of sharing

state between processes :

– The program create a Manager list,

share it between n number of

workers, every worker update an

index.

– After all workers finish, the new list

is printed to stdout.

Sharing state between processes

• Server process simple example :

Sharing state between processes

• Observation :

– We did not have to worry about

synchronizing the access to the

list. The manager took care of that.

– all processes see the same list and

act on one shared list.

• Result when n = 10000 :

Sharing state between processes

• Summary of the last 10 slides :

– Communication channels :

• Queues

• Pipes

– Shared data :

• Shared memory :

– value

– array

• Server :

– Manager

• Let‟s discover other cool features

in our module :

Multiprocessing module

• Multiprocessors module has a Pool

class that :

– Distribute the work between

worker.

– Collect the return value as a list.

• You do not have to worry about

managing queue , processes,

shared date/stats yourself.

• It makes it easy to implement

quick/simple concurrent program.

• Lets see an example :

Pool of worker

• Program reads list of words from a

file and returns a list of list where

every list contains a word and its

length.

Pool of worker

• Observation :

– we did not do any work beside

telling the program how many

workers we want in the pool.

• Part of the result :

• It can not be easier than this 

Pool of worker

• Recall that the Manager in

multiprocessing module controls a

server process that manages a

share object.

• That server can be accessed

remotely and the shared object can

be distributed to many clients.

Whenever a client update the

shared object, every other client

will see the change.

Distributed concurrency

• To create the server :

– Create a class that inherit

BaseManager class.

– Call the class method “register” to

assign a name to what you want to

share.

– Define the address which your

server will be listening on.

– Call the function get_server and

serve_forever to run the server.

• To create the client :

Distributed concurrency

– Register the name of the object that

the server is sharing.

– Connect to the server address.

– Call the name of the shared object.

• Lets see an Example :

Distributed concurrency

• Multiprocessing module is a

powerful addition to python. it

solved the GIL problem and

introduced easy way to achieve

true parallelism.

• Implementing a concurrent

program is not easy, but with the

way this module works, I think it

makes the programmer job much

easier.

Conclusion

• The example in slide 10 was based

on an example on a presentation

by Jesse Noller on

PyWorks,Atlanta 2008.

• My explanation of the GIL problem

and the solution were in Jesse

Noller presentation and also in a

tutorial by Norman Matloff and

Francis Hsu.

Credit when credit is due

• Python 2.6 documentation,

http://docs.python.org/library/multip

rocessing.html

• PyMOTW by Doug Hellmann,

http://www.doughellmann.com/PyM

OTW/multiprocessing/

• “Tutorial on Threads Programming

with Python” by Norman Matloff

and Francis Hsu, University of

California, Davis.

References

http://docs.python.org/library/multiprocessing.html
http://docs.python.org/library/multiprocessing.html
http://www.doughellmann.com/PyMOTW/multiprocessing/
http://www.doughellmann.com/PyMOTW/multiprocessing/

