
The Ins and Outs of Agile Methods
Tom Smallwood
Lecture 28– CSCI 5828
04/22/2010

A little background

• Graduated with MESE 1995
•  25 years in development
• Variety of mostly small shops in Boulder area
• Agile development since late 90s
• Currently employed at Valtech
• Agile Transformation Coach
•  tom@smallwood-software.com

Today’s Purpose

•  Free form and spontaneous
• Answer your questions about using Agile
•  Supplement
•  Typical challenges

Your impressions

• How rigorous were you using agile?
• What worked well?
• Benefits that you experienced?
• Questions about Agile practices?

Agile Introduction

•  The course provided a good foundation of Agile
• One of the course presentations provided a good

description of Scrum

Close to
Certainty

Far from
Certainty

Close to
Agreement

Far from
Agreement

Technology

Requirements

Chaotic •  High turbulence
•  No clear cause & effect
•  Unpredictable
•  Many decisions no time

•  Immediate action to re-establish order
•  Prioritize and select actionable work
•  Look for what works rather than perfection
•  Act, sense, respond
•  Act on what is high priority and can be
bounded

Complex •  More unpredictability than
predictability
•  Emergent answers
•  Many competing ideas

•  Create bounded environments
•  Increase level of interaction/
communication
• Generate ideas
•  Probe, sense, respond
•  Servant leadership
•  Let people figure out the best way

Complicated •  More predictability than
unpredictability
•  Fact-based management
•  Experts work out the wrinkles

•  Utilize experts to gain insights
•  Use metrics to gain control
•  Sense, analyze, respond
•  Command & control

Simple •  Repeating patterns
•  Consistent events
•  Clear cause & effect
•  Well established knowns
•  Fact based management

•  Use best practices
•  Extensive communication not necessary
•  Establish patterns and optimize them
•  Command & control

Defined, Predictive

Empirical,
Unpredictable

Start with a
plan and all
requirements

End with all
requirements
completed

Start with
goals and
some priority
requirements

End with
goals met

Long Feedback Cycles

Short Feedback Cycles

Effect of Feedback Length

Origin
The
planned
destination
@ T0

The plan

Treating SW Dev as predictive

Origin
The
planned
destination
@ T0

The plan

In the mean time

The real
destination
@ T1

Origin The
expected
destination
@ T0

The plan

Inspect and Adapt

The actual
destination
@ T1

What we learn

•  Plans change for a variety of reasons
• Expect them to change
•  SW is novel and complex
• Use a process that allows for change
•  Planning is done at different levels
•  Inspect and adapt

Horizon of Predictability

Cone of Uncertainty

Now Future

Levels of Planning

Daily	

Sprint	

Release	

Roadmap	

Vision	

Period of Time

The Problem With “Waterfall”

Horizon of Predictability

Requirements

Design

Implementation

Verification

Predictable Uncertain Unpredictable
Now Future

Big Batch
of Features The Plan

It never quite works out

Requirements

Design

Implementation

Big Batch
of Features The Reality #1

We ran into some surprises

Verification

The Problem With “Waterfall”

Implementation

Verification

The Reality #2
We had to meet our schedule

Test and Fix
Aka “The circle of hell”

The Problem With “Waterfall”

Implementation

The Reality #3
This took longer than expected

And other nightmares
•  late integration of component and system
•  untested deployments
•  lack of production-like environments
•  production find and fix
•  manual regression testing
•  death marches
•  burnout
•  divorce
•  people quit

What we learn

•  Small plans are less complex than big plans
• Variance exists no matter how well you plan
• Death marches are no fun
•  Predict future progress by past progress
• Excessive designing results in bloat
• Building it proves it
• Complex systems emerge from simple systems

Sprint 2

Horizon of Predictability

Horizon of Predictability
Predictable Uncertain Unpr

Horizon of Predictability
Predictable Uncertain

Predictable

Small Batch
of Features

Small Batch
of Features

Small Batch
of Features

Sprint 3

Sprint 1

Backlogs that Support Agile Planning

Product
Backlog

R1 R2 R3

S1 S2 S3

Goals
Feature Sets

Feature Sets
Features

Functions/Actionable

Epic Stories

User Stories

Vision

Release/Roadmap

Sprint

Abide by the horizon of predictability

What we learn

• Uncover details to the level that is responsible
• Delay decisions until the last responsible

moment
• Don’t do work until its needed (JIT)
•  JIT Requirements

Right-sizing stories - INVEST

•  I – independent
• N – negotionable
• V – valuable
• E – estimatable
•  S – small
•  T - testable

Right-sizing stories

Stories too big Stories small so steady
progress is made

Effort Complexity Risk

0	

20	

40	

60	

80	

100	

0	 20	 40	 60	 80	 100	

Challenges of Agile

•  Still considered new-fangled
• Requires discipline -- very few companies have it
• Agile failures blamed on Agile
• Most are looking for a process to follow not a

new way of thinking
• Waterfall behaviors are difficult to overcome
• Agile requires cultural change – this is hard
•  Teams are empowered, leadership serves
• Making the entire value stream agile

What Agile means to you

• Agile testing – very few companies do it. There is
a big need for people that know how to do it.

• Make TDD your development methodology
• Be skilled in multiple disciplines
•  Learn Agile/Lean – this is bound to be with us

for a very long time. 2000s Agile was used in
small shops. 2010s large companies are now
adopting Agile.

ROI - Waterfall

Cost

Time

I

R

ROI - Iterative

Cost

Time

Technical Debt

Technical
Debt

Technical
Debt

Technical
Debt

Over time,
technical debt
accumulates,
System must be
rewritten

• 	 Add	 nothing	 but	 value	

• 	 Center	 on	 people	 who	 add	 value	

• 	 Flow	 value	 from	 demand	

• 	 Op>mize	 across	 organiza>ons	

The	 Value	 Stream	

10
min

20
min

10
min

30
min

20
min

30 min

Time Worked
-------------- =
Efficiency
 Cycle Time

40 min 200 min 50 min

 90
-------------- = 20%
Efficient
 410

	 The	 first	 step	 in	 Lean	 thinking	 is	 learning	 to	 see	 waste	
and	 remove	 it.	

	 Don’t	 try	 to	 improve	 the	 “value	 add”	 steps	 –	 	
at	 least	 ini>ally	

10
min

20
min

10
min

30
min

20
min

30 min 40 min 200 min 50 min

Overproduc>on	
Inventory	

Extra	 Processing	 Steps	
Mo>on	
Defects	
Wai>ng	

Transporta>on	

Overproduc>on	
Inventory	

Extra	 Processing	 Steps	
Mo>on	
Defects	
Wai>ng	

Transporta>on	

Extra	 (Unused)	 Features	
Gold	 Pla>ng	

Un-‐integrated	 code	
Untested	 Code	

Un-‐deployed	 Code	

Develop	 only	 for	 today’s	 stories	
Don’t	 build	 “for	 the	 ages”	

YAGNI	

Work	 in	 Progress	
(All	 work	 in	 progress	 is	 poten>al	 waste)	

Prematurely	 specified	 details	
Par>ally	 completed	 stories	

Un-‐integrated	 code	
Untested	 code	

Un-‐deployed	 code	

Delay	 work	 un>l	 it	 is	 needed	 and	 can	
be	 completed	 (i.e.,	 JIT)	

Minimize	 WIP	

Inefficient	 Process	
Manual	 Opera>ons	
Excessive	 Formality	

Unnecessary	 Paperwork	
Handoffs	

Complex	 communica>on	 methods	
Doing	 more	 than	 is	 necessary	

Face-‐to-‐face	 communica>on	
Do	 the	 simplest	 thing	 possible	

Finding	 and	 Re-‐finding	 Informa>on	
Relearning	

Long	 feed-‐back	 loops	
Distributed	 teams	

High-‐effort	 communica>on	
Handoffs	

Jerky	 and	 interrupted	 flow	 	

Keep	 communica>on	 costs	 (effort)	 cheap	
Cross-‐func>onal	 and	 co-‐located	 teams	

Smooth	 flow	

Defects	 not	 caught	 by	 tests	
Unclear	 acceptance	 criteria	

Handoffs	
Long	 feed-‐back	 loops	
No	 Product	 Owner	

Keep	 defects	 out	 of	 the	 code!	
Use	 TDD,	 SDD,	 Executable	 Requirements	

Automated	 tes>ng	 of	 all	 types	
“Stop	 the	 line”	 mentality	

Mistake-‐proof	 anything	 and	 everything	

Wai>ng	
Distributed	 teams	
Mul>-‐tasking	

Organiza>onal	 Silos	
Product	 Owner	 not	 available	

Long	 feed-‐back	 loops	
Handoffs	

Teams	 make	 cri>cal	 decisions	 every	 15	 minutes	
Cross-‐func>onal	 teams	

Co-‐located	 teams	
Highly	 available	 Product	 Owner	

Handoffs	
Managing/Maintaining	 Premature	 Details	
Managing	 large	 backlogs	 and	 bug	 lists	

Product	 Owner	 (customer)	 not	 available	 to	 team	

Every	 >me	 informa>on	 is	 transferred	 to	
another	 group	 or	 person	 knowledge	 is	
usually	 lost	 (and	 wai>ng	 is	 usually	

introduced)	
Follow	 JIT	 Principles	 	

Clean	 House	

If	 something	 does	 not	 directly	 	
add	 value,	 it	 is	 waste.	 	

If	 there	 is	 a	 way	 to	 do	 without	 it,	 	
it	 is	 waste.	

Speed	 is	 the	 absence	 of	 waste	 	

