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A little background 

• Graduated with MESE 1995 
•  25 years in development 
• Variety of mostly small shops in Boulder area  
• Agile development since late 90s 
• Currently employed at Valtech 
• Agile Transformation Coach 
•  tom@smallwood-software.com 



Today’s Purpose 

•  Free form and spontaneous 
• Answer your questions about using Agile 
•  Supplement 
•  Typical challenges 



Your impressions 

• How rigorous were you using agile? 
• What worked well? 
• Benefits that you experienced? 
• Questions about Agile practices? 



Agile Introduction 

•  The course provided a good foundation of Agile 
• One of the course presentations provided a good 

description of Scrum  
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Chaotic •  High turbulence 
•  No clear cause & effect 
•  Unpredictable 
•  Many decisions no time 

•  Immediate action to re-establish order 
•  Prioritize and select actionable work 
•  Look for what works rather than perfection 
•  Act, sense, respond 
•  Act on what is high priority and can be 
bounded 

Complex •  More unpredictability than 
predictability 
•  Emergent answers 
•  Many competing ideas 

•  Create bounded environments 
•  Increase level of interaction/
communication 
• Generate ideas 
•  Probe, sense, respond  
•  Servant leadership 
•  Let people figure out the best way 

Complicated •  More predictability than 
unpredictability 
•  Fact-based management 
•  Experts work out the wrinkles 

•  Utilize experts to gain insights 
•  Use metrics to gain control 
•  Sense, analyze, respond 
•  Command & control 

Simple •  Repeating patterns 
•  Consistent events 
•  Clear cause & effect 
•  Well established knowns 
•  Fact based management 

•  Use best practices 
•  Extensive communication not necessary 
•  Establish patterns and optimize them 
•  Command & control 



Defined, Predictive 

Empirical, 
Unpredictable 

Start with a 
plan and all 
requirements 

End with all 
requirements 
completed 

Start with 
goals and 
some priority 
requirements 

End with 
goals met  



Long Feedback Cycles 

Short Feedback Cycles 

Effect of Feedback Length 
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Treating SW Dev as predictive 
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What we learn 

•  Plans change for a variety of reasons 
• Expect them to change 
•  SW is novel and complex 
• Use a process that allows for change 
•  Planning is done at different levels 
•  Inspect and adapt 



Horizon of Predictability 



Cone of Uncertainty 

Now Future 



Levels of Planning 

Daily	  

Sprint	  

Release	  

Roadmap	  

Vision	  

Period of Time 



The Problem With “Waterfall” 

Horizon of  Predictability
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It never quite works out 

Requirements

Design

Implementation

Big Batch  
of Features The Reality #1 

We ran into some surprises 

Verification



The Problem With “Waterfall” 

Implementation

Verification

The Reality #2 
We had to meet our schedule 

Test and Fix 
Aka “The circle of hell” 



The Problem With “Waterfall” 

Implementation

The Reality #3 
This took longer than expected 

And other nightmares 
•  late integration of component and system 
•  untested deployments 
•  lack of production-like environments 
•  production find and fix 
•  manual regression testing  
•  death marches 
•  burnout 
•  divorce 
•  people quit 



What we learn 

•  Small plans are less complex than big plans 
• Variance exists no matter how well you plan 
• Death marches are no fun 
•  Predict future progress by past progress 
• Excessive designing results in bloat 
• Building it proves it 
• Complex systems emerge from simple systems 



Sprint 2
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Backlogs that Support Agile Planning 

Product 
Backlog 

R1 R2 R3 

S1 S2 S3 

Goals 
Feature Sets 

Feature Sets 
Features 

Functions/Actionable 

Epic Stories 

User Stories 

Vision 

Release/Roadmap 

Sprint 



Abide by the horizon of predictability 



What we learn 

• Uncover details to the level that is responsible 
• Delay decisions until the last responsible 

moment 
• Don’t do work until its needed (JIT) 
•  JIT Requirements 



Right-sizing stories - INVEST 

•  I – independent 
• N – negotionable 
• V – valuable 
• E – estimatable 
•  S – small 
•  T - testable 



Right-sizing stories 

Stories too big Stories small so steady 
progress is made 
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0	  

20	  

40	  

60	  

80	  

100	  

0	   20	   40	   60	   80	   100	  



Challenges of Agile 

•  Still considered new-fangled 
• Requires discipline -- very few companies have it 
• Agile failures blamed on Agile 
• Most are looking for a process to follow not a 

new way of thinking 
• Waterfall behaviors are difficult to overcome 
• Agile requires cultural change – this is hard 
•  Teams are empowered, leadership serves 
• Making the entire value stream agile  



What Agile means to you 

• Agile testing – very few companies do it. There is 
a big need for people that know how to do it. 

• Make TDD your development methodology 
• Be skilled in multiple disciplines 
•  Learn Agile/Lean – this is bound to be with us 

for a very long time. 2000s Agile was used in 
small shops. 2010s large companies are now 
adopting Agile.   
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ROI - Iterative 

Cost 

Time 



Technical Debt 

Technical 
Debt 

Technical 
Debt 

Technical 
Debt 

Over time, 
technical debt 
accumulates, 
System must be 
rewritten 





• 	  Add	  nothing	  but	  value	  

• 	  Center	  on	  people	  who	  add	  value	  

• 	  Flow	  value	  from	  demand	  

• 	  Op>mize	  across	  organiza>ons	  



The	  Value	  Stream	  
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	  The	  first	  step	  in	  Lean	  thinking	  is	  learning	  to	  see	  waste	  
and	  remove	  it.	  

	  Don’t	  try	  to	  improve	  the	  “value	  add”	  steps	  –	  	  
at	  least	  ini>ally	  
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Overproduc>on	  
Inventory	  

Extra	  Processing	  Steps	  
Mo>on	  
Defects	  
Wai>ng	  

Transporta>on	  



Extra	  (Unused)	  Features	  
Gold	  Pla>ng	  

Un-‐integrated	  code	  
Untested	  Code	  

Un-‐deployed	  Code	  

Develop	  only	  for	  today’s	  stories	  
Don’t	  build	  “for	  the	  ages”	  

YAGNI	  



Work	  in	  Progress	  
(All	  work	  in	  progress	  is	  poten>al	  waste)	  

Prematurely	  specified	  details	  
Par>ally	  completed	  stories	  

Un-‐integrated	  code	  
Untested	  code	  

Un-‐deployed	  code	  

Delay	  work	  un>l	  it	  is	  needed	  and	  can	  
be	  completed	  (i.e.,	  JIT)	  

Minimize	  WIP	  



Inefficient	  Process	  
Manual	  Opera>ons	  
Excessive	  Formality	  

Unnecessary	  Paperwork	  
Handoffs	  

Complex	  communica>on	  methods	  
Doing	  more	  than	  is	  necessary	  

Face-‐to-‐face	  communica>on	  
Do	  the	  simplest	  thing	  possible	  



Finding	  and	  Re-‐finding	  Informa>on	  
Relearning	  

Long	  feed-‐back	  loops	  
Distributed	  teams	  

High-‐effort	  communica>on	  
Handoffs	  

Jerky	  and	  interrupted	  flow	  	  

Keep	  communica>on	  costs	  (effort)	  cheap	  
Cross-‐func>onal	  and	  co-‐located	  teams	  

Smooth	  flow	  



Defects	  not	  caught	  by	  tests	  
Unclear	  acceptance	  criteria	  

Handoffs	  
Long	  feed-‐back	  loops	  
No	  Product	  Owner	  

Keep	  defects	  out	  of	  the	  code!	  
Use	  TDD,	  SDD,	  Executable	  Requirements	  

Automated	  tes>ng	  of	  all	  types	  
“Stop	  the	  line”	  mentality	  

Mistake-‐proof	  anything	  and	  everything	  



Wai>ng	  
Distributed	  teams	  
Mul>-‐tasking	  

Organiza>onal	  Silos	  
Product	  Owner	  not	  available	  

Long	  feed-‐back	  loops	  
Handoffs	  

Teams	  make	  cri>cal	  decisions	  every	  15	  minutes	  
Cross-‐func>onal	  teams	  

Co-‐located	  teams	  
Highly	  available	  Product	  Owner	  



Handoffs	  
Managing/Maintaining	  Premature	  Details	  
Managing	  large	  backlogs	  and	  bug	  lists	  

Product	  Owner	  (customer)	  not	  available	  to	  team	  

Every	  >me	  informa>on	  is	  transferred	  to	  
another	  group	  or	  person	  knowledge	  is	  
usually	  lost	  (and	  wai>ng	  is	  usually	  

introduced)	  
Follow	  JIT	  Principles	  	  

Clean	  House	  



If	  something	  does	  not	  directly	  	  
add	  value,	  it	  is	  waste.	  	  

If	  there	  is	  a	  way	  to	  do	  without	  it,	  	  
it	  is	  waste.	  

Speed	  is	  the	  absence	  of	  waste	  	  




