
© University of Colorado, 2010

Test-Driven
Development
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 22 — 04/01/2010

1

2

Credit where Credit is
Due (I)

Some of the material for this lecture is taken from “Test-
Driven Development” by Kent Beck

as such some of this material is copyright © Addison Wesley,
2003

In addition, some material for this lecture is taken from
“Agile Software Development: Principles, Patterns, and
Practices” by Robert C. Martin

as such some materials is copyright © Pearson Education,
Inc., 2003

3

Credit where Credit is
Due (II)

Finally, one of the examples is inspired by the Roman
Numerals example that is featured in Dive into Python 3
<http://diveintopython3.org/> by Mark Pilgrim.

The slides devoted to that example are thus distributed
using the following license: <http://creativecommons.org/
licenses/by-sa/3.0/>.

http://diveintopython3.org
http://diveintopython3.org
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Side Note

Pointer to a Podcast on the topic of Test Driven
Development

<http://faceoffshow.com/2009/03/31/episode-10-test-driven-
development/>

4

http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/
http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/
http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/
http://faceoffshow.com/2009/03/31/episode-10-test-driven-development/

Goals

Review material from Chapter 8 of Pilone & Miles

Test-Driven Development

Terminology

Concepts

Techniques

Tools

5

Test-Driven Development

An agile practice that asserts that testing is a fundamental
part of software development

Rather than thinking of testing as something that occurs after
implementation, we want to think of it as something that
occurs BEFORE and DURING implementation

Indeed, done properly, testing can DRIVE implementation

The result, increased confidence when performing other
tasks such as fixing bugs, refactoring, or reimplementing
parts of your software system

6

7

Testimonial
On Monday, September 8, 2003, at 03:44 PM, a former student wrote:

> Dr. Anderson -
>
> I hope you don't mind hearing from former students :) Remember me
> from Object Oriented Analysis and Design last spring? I'm now happily
> graduated and working in the so-called 'Real World' (yikes).
>
> I just wanted to give you another testimony on the real-life use of
> test driven development. My co-workers are stunned that I am actually
> using something at work that I learned at school (well, not really,
> but they like to tease). For a new software parsing tool I'm
> developing, I decided to use TDD to develop it and it is making my
> life so easy right now to test new changes.
>
> Anyways, I just thought of you and your class when I decided to use
> this and I wanted to let you know.
>
> I hope that you are doing well. Best of luck on this new semester.

8Test First

The definition of test-driven development:

All production code is written to make failing test cases pass

Terminology

Production code is code that is deployed to end users and
used in their “production environments” that is there day to
day work

Implications

When developing software, we write a test case first, watch it
fail, then write the simplest code to make it pass; repeat

Example (I)

Consider writing a program to score the game of bowling
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
}

When you compile this program, the test “fails” because the Game
class does not yet exist. But:

You have defined two methods on the class that you want to use

You are designing this class from a client’s perspective

9

Example (II)

You would now write the Game class

public class Game {
public void addThrow(int pins) {
}
public int getScore() {

return 0;
}

}
The code now compiles but the test will still fail:

getScore() returns 0 not 5

In Test-Driven Design, Beck recommends taking small, simple steps
So, we get the test case to compile before we get it to pass

10

Example (III)

Once we confirm that the test still fails, we would then write the
simplest code to make the test case pass; that would be

public class Game {
public void addThrow(int pins) {
}
public int getScore() {

return 5;
}

}

The test case now passes! ☺

11

Example (IV)

But, this code is not very useful! Lets add a new test case
public class TestGame extends TestCase {

public void testOneThrow() {
Game g = new Game();
g.addThrow(5);
assertEquals(5, g.getScore());

}
public void testTwoThrows() {

Game g = new Game();
g.addThrow(5); g.addThrow(4);
assertEquals(9, g.getScore());

}
}

The first test passes, but the second case fails (since 9 ≠ 5)
This code is written using JUnit; it uses reflection to invoke tests
automatically

12

Example (V)

We have duplication of information between the first test
and the Game class

In particular, the number 5 appears in both places

This duplication occurred because we were writing the
simplest code to make the test pass

Now, in the presence of the second test case, this duplication
does more harm than good

So, we must now refactor the code to remove this duplication

13

Example (VI)

public class Game {
private int score = 0;
public void addThrow(int pins) {

score += pins;
}
public int getScore() {

return score;
}

}

14

Both tests now pass. Progress!

Example (VII)

But now we to make additional progress, we add another test case
to the TestGame class
…

public void testSimpleSpare() {
Game g = new Game()
g.addThrow(3); g.addThrow(7); g.addThrow(3);
assertEquals(13, g.scoreForFrame(1));
assertEquals(16, g.getScore());

}
…

We’re back to the code not compiling due to scoreForFrame()

We’ll need to add a method body for this method and give it the simplest
implementation that will make all three of our tests cases pass

15

16TDD Life Cycle

The life cycle of test-driven development is

Quickly add a test

Run all tests and see the new one fail

Make a simple change

Run all tests and see them all pass

Refactor to remove duplication

This cycle is followed until you have met your goal;

17TDD Life Cycle, continued

Kent Beck likes to perform
TDD using a testing
framework, such as JUnit.

Within such frameworks
failing tests are indicated with a
“red bar”

passing tests are shown with a
“green bar”

As such, the TDD life cycle is
sometimes described as

“red bar/green bar/refactor”

JUnit: Red Bar...

When a test fails:

You see a red bar

Failures/Errors are listed

Clicking on a failure
displays more detailed
information about what
went wrong

18

19

Example Background:
Multi-Currency Money

Lets design a system that will allow us to perform financial
transactions with money that may be in different currencies

e.g. if we know that the exchange rate from Swiss Francs to
U.S. Dollars is 2 to 1 then we can calculate expressions like

5 USD + 10 CHF = 10 USD

or

5 USD + 10 CHF = 20 CHF

20Starting From Scratch

Lets start developing such an example

How do we start?

TDD recommends writing a list of things we want to test

This list can take any format, just keep it simple

Example

$5 + 10 CHF = $10 if rate is 2:1

$5 * 2 = $10

21First Test

The first test case looks a bit complex, lets start with the
second

5 USD * 2 = 10 USD

First, we write a test case
public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

22Discussion on Test

public void testMultiplication() {

Dollar five = new Dollar(5);

five.times(2);

assertEquals(10, five.amount)

}

What benefits does this provide?
target class plus some of its interface

we are designing the interface of the Dollar class by thinking
about how we would want to use it

We have made a testable assertion about the state of that
class after we perform a particular sequence of operations

23What’s Next?

We need to update our test list

The test case revealed some things about Dollar that we will
want to address

We are representing the amount as an integer, which will make
it difficult to represent values like 1.5 USD; how will we handle
rounding of factional amounts?

Dollar.amount is public; violates encapsulation

What about side effects?; we first declared our variable as
“five” but after we performed the multiplication it now equals
“ten”

24Update Testing List

The New List

5 USD + 10 CHF = 10 USD

$5 * 2 = $10

make “amount” private

Dollar side-effects?

Money rounding?

Now, we need to fix the compile errors

no class Dollar, no constructor, no method: times(), no field:
amount

25First version of Dollar

public class Dollar {

public Dollar(int amount) {

}

public void times(int multiplier) {

}

public int amount;

}

Now our test compiles and fails!

26Too Slow?

Note: we did the simplest thing to make the test compile;

now, we are going to do the simplest thing to make the test
pass

Is this process too slow?

YES, as you get familiar with the TDD life cycle you will gain
confidence and make bigger steps

NO, taking small simple steps avoids mistakes;

beginning programmers try to code too much before invoking
the compiler;

they then spend the rest of their time debugging!

27How do we make the

Here’s one way
public void times(int multiplier) {

amount = 5 * 2;

}

The test now passes, we received a “green bar”!

Now, we need to “refactor to remove duplication”

But where is the duplication?

Hint: its between the Dollar class and the test case

28Refactoring

To remove the duplication of the test data and the hard-
wired code of the times method, we think the following

“We are trying to get a 10 at the end of our test case and
we’ve been given a 5 in the constructor and a 2 was passed
as a parameter to the times method”

So, lets connect the dots…

29

First version of Dollar
Class
public class Dollar {

public Dollar(int amount) {

! this.amount = amount;

}

public void times(int multiplier) {

! amount = amount * multiplier;

}

public int amount;

}

Now our test compiles and passes, and we didn’t have to
cheat!

30One loop complete!

Before writing the next test case, we update our testing list

5 USD + 10 CHF = 10 USD

$5 * 2 = $10

make “amount” private

Dollar side-effects?

Money rounding?

31One more example

Lets address the “Dollar Side-Effects” item and then move
on to another example

Lets write the next test case

When we called the times operation our variable “five” was
pointing at an object whose amount equaled “ten”; not good

the times operation had a side effect which was to change the
value of a previously created “value object”

Think about it, as much as you might like to, you can’t change
a 5 dollar bill into a 500 dollar bill; the 5 dollar bill remains the
same throughout multiple financial transactions

32Next test case

The behavior we want is
public void testMultiplication() {

Dollar five = new Dollar(5);

Dollar product = five.times(2);

assertEquals(10, product.amount);

product = five.times(3);

assertEquals(15, product.amount);

assertEquals(5, five.amount);

}

33Test fails

The test fails because it won’t compile;

We need to change the signature of the times method;
previously it returned void and now it needs to return Dollar
public Dollar times(int multiplier) {

amount = amount * multiplier;

return null;

}

The test compiles but still fails; as Kent Beck likes to say
“Progress!”

34Test Passes

To make the test pass, we need to return a new Dollar
object whose amount equals the result of the multiplication

public Dollar times(int multiplier) {

return new Dollar(amount * multiplier);

}

Test Passes;

Cross “Dollar Side Effects?” off the testing list; second loop
complete!

There was no need to refactor in this situation

35

Discussion of the
Example

There is still a long way to go
only scratched the surface

But
we saw the life cycle performed twice
we saw the advantage of writing tests first
we saw the advantage of keeping things simple
we saw the advantage of keeping a testing list to keep track
of our progress

Plus, as we write new code, we will know if we are breaking
things because our old test cases will fail if we do;

if the old tests stay green, we can proceed with confidence

Roman Numerals (I)

Let’s develop a class that can manipulate roman numerals
Roman numerals can express integers from 1 to 3999

They do this using the following set of symbols
I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000

There are rules concerning how these characters can be
combined

For instance, the 10s characters (X,C,M) can be repeated up
to three times
The 5s characters (V, L, D) cannot be repeated
Character sequences can be additive (III = 3) or subtractive
(IX = 9)

Can be complex 99 is written as XCIX (100-10 + 10-1)

36

Roman Numerals (II)

We start by developing a testing list

able to convert legal roman numerals to integers

able to convert integers in the range 1 to 3999 into roman
numerals

able to add two roman numerals, checking for boundary
conditions

able to subtract two roman numerals, checking for boundary
conditions

We will not complete the example but we’ll make progress
on a few of these

37

Test Case: Create a

Let’s use Python’s Unit Test framework

We write the test case as if all the code we need is available

38

import roman1
import unittest2

3
class TestRomanNumerals(unittest.TestCase):4

5
 def testCreateAndGetValue(self):6
 thousand = roman.RomanNumeral("M")7
 self.assertEqual(thousand.value(), 1000)8

9
if __name__ == "__main__":10
 unittest.main()11

12

Several Failures on the
Path to Green

module import fail: no file named roman.py ➟ create one
no class called RomanNumeral ➟ create one
wrong number of arguments for constructor ➟ add self and value
arguments
no method called value() ➟ create a “blank” one
test now runs and reports failure!! ➟ write simplest code to make it
work
test passes but contains duplication ➟ add another test case to make
it fail

end of step 2, onto step 3 directory
original test passes, but new test fails ➟ write simplest code to make it
work

note, because of the tests, this is no longer trivial code to write

39

Making Progress; But
Long way to go

We now have a class that can successfully handle Roman
Numerals that consist only of “M” characters

We haven’t fully completed any of the items on our test list

We have lots of different directions we could go in

Add tests to check that we handle bad input

Add tests to add support for other roman numeral characters

Add tests to add basic support for addition or subtraction

etc.

Let’s focus on bad input to see the test-code-refactor loop
one more time

40

Test Case: Handle Bad

Let’s add test cases that handle

wrong input types (being handed a number or array rather
than a string)

wrong values (producing a value that is outside the legal set
of values)

Then, we’ll add a test case that can handle basic addition

41

Several Failures on the
Path to Green (Again)

add test case to handle non-string args to the constructor
Here we want to give it bad input and see if it raises an exception

All such tests will currently fail since the constructor just accepts
whatever it is given

Start by passing a number, check to see if it raises an exception ➟ fail
Add code to check for int ➟ pass; now pass collection ➟ fail

Make it pass but then erase code written so far and now write code
to raise exception whenever a non-string is passed

This is the refactor step, as we were adding duplication based on
the types of the parameters passed in between code and test
case

End of step 4; now make sure that we test the contents of the string
accept “M”, “MM”, and “MMM” for now, all else should fail

42

Test Case: Handle
Addition

All we’ll be able to do is handle 1000 + 1000 and 1000 + 2000
but this will ensure that we’ve got the basics in place

can handle correct additions
can flag additions that produce numbers outside the legal range

Getting to Green
Add a sum method that follows the “value” pattern seen above
Generates ValueError if the value goes outside of the legal range
First a test case to handle an illegal addition
Then a test case to handle a legal addition

We’ll encounter familiar steps
fails because there is no sum method
fails because it doesn’t throw an exception
etc.

43

End of Example

Still a long way to go, but you should now have the feel of
what test-driven development is like

Start with a system that needs a new feature

Write a test that documents what the expected results of the
feature are

Add simplest code to make test pass

Make test more complicated, or add new test to reveal
duplication

Once duplication is found, refactor to produce general code

Loop until feature is implemented and all tests pass

44

45Principles of TDD

Testing List
keep a record of where you want to go;

Beck keeps two lists, one for his current coding session
and one for “later”; You won’t necessarily finish everything
in one go!

Test First
Write tests before code, because you probably won’t do it
after
Writing test cases gets you thinking about the design of your
implementation;

does this code structure make sense?
what should the signature of this method be?

46

Principles of TDD,
continued

Assert First

How do you write a test case?

By writing its assertions first!

Suppose you are writing a client/server system and you want
to test an interaction between the server and the client

Suppose that for each transaction

some string has to have been read from the server, and

the socket used to talk to the server should be closed after the
transaction

Lets write the test case

47Assert First

public void testCompleteTransaction {

…

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

Now write the code that will make these asserts possible

48Assert First, continued

public void testCompleteTransaction {

Server writer = Server(defaultPort(), “abc”)

Socket reader = Socket(“localhost”, defaultPort());

Buffer reply = reader.contents();

assertTrue(reader.isClosed());

assertEquals(“abc”, reply.contents());

}

Now you have a test case that can drive development

if you don’t like the interface above for server and socket,
then write a different test case

or refactor the test case, after you get the above test to pass

49

Principles of TDD,
continued

Evident Data
How do you represent the intent of your test data
Even in test cases, we’d like to avoid magic numbers;
consider this rewrite of our second “times” test case

public void testMultiplication() {
Dollar five = new Dollar(5);
Dollar product = five.times(2);
assertEquals(5 * 2, product.amount);
product = five.times(3);
assertEquals(5 * 3, product.amount);

}

Replace the “magic numbers” with expressions

TDD in our Book

Largely follows what I’ve presented above

Rule 1: Watch tests fail before you implement code

Rule 2: Implement the simplest code possible to make the
test pass

You add more tests to make the code evolve

Life Cycle: Red, Green, Refactor

But also adds a few new points…

50

Tests Drive
Implementation

Each test should verify only one thing

Why is this important?

Avoid duplicate test code

Testing takes time; don’t waste it by running the same test
twice!

Use setup and teardown methods in testing frameworks to
eliminate redundant initialization/finalization code

Keep your tests in a MIRROR directory of your source code

src/ and test/ become top-level folders in your project dir.

51

TDD and Task
Completion

A task can be declared complete when all of its associated
tests pass

How many tests are needed?

As discussed last time you need a criteria for knowing when
you are done

Have you covered all of the functionality associated with the
task?

If you’re doing code coverage, have you achieved your target
percentage for statement and branch coverage?

52

TDD: client perspective

Writing tests first lets you work on specifying the API of the
classes involved in the test

OrderInfo info = new OrderInfo()

info.setCustomerName(“Dan”)

…

Receipt r = orderProcessor.process(info);

assertTrue(r.getConfirmationNumber() > 0)

53

TDD: tests across tasks

Occasionally you will be in a situation in which you need to
write tests that will require you to access code associated
with a different task

If that other task has not yet started, the code will not exist

Should we give up in such a situation?

No! This is an opportunity to design the API of those classes
while making progress on the current task

54

Accessing a DB

In the textbook, the developers need to access the DB
while working on the task that handles order processing

They decide to simulate DB access with a TestDBUtil class

When they switch to working on the task associated with
creating the real DB, they’ll write a “real” DBUtil class

Note: the TestDBUtil class does not belong in the src/
directory of your project; its code that will only be used by
tests, so it should live under the test/ dir.

55

Strategy Pattern (one part
of it) 56

getGiftCard(id: int) : GiftCard
saveGiftCard(card: GiftCard): void
saveOrder(info: OrderInformation): void

«interface»
DBUtil

getGiftCard(id: int) : GiftCard
saveGiftCard(card: GiftCard): void
saveOrder(info: OrderInformation): void

MySQLDBUtil
getGiftCard(id: int) : GiftCard
saveGiftCard(card: GiftCard): void
saveOrder(info: OrderInformation): void

TestDBUtil

Talks to DB; returns
“real” objects

Simulates DB; returns
objects with “dummy” data

TDD leads to better code

TDD not only leads to more tests that help us find faults in
our code, it also

produces better organized code:
production code in one place, testing in another

packages and classes are designed from a client perspective

produces code that always does the same thing
Avoids the “if (debug) {}” trap

Loosely coupled code
Encourages the creation of highly cohesive and loosely coupled
code because that type of code is easier to test!

57

More tests always means
more code

The original version of XP

had 10 million lines of production code;

had 15 million lines of test code!

The book however now discusses “corner cases”

testing not only the success case but all the ways a particular
function might fail;

this, in turn, leads to lots of different objects that are similar
but do slightly different things (to test different cases)

This leads to a discussion of “mock objects”; see book for
details

58

Things to Avoid

Not using a criteria to determine when you are “done”
You need to be systematic if you want to ensure that you
cover all the cases associated with a particular function

Not using real data
When testing, you’ll sometimes create data to test the
system; that’s good but you need to make sure you test your
system on realistic data (perhaps received from the customer)

Forgetting to clean up after yourself: “ghosts from the past”
Need to make sure that results from previous tests are not
influencing the results of tests that come after

59

Wide Applicability

Unit Tests can be created in lots of different contexts

GUIs, Web services, Javascript, embedded software, etc.

Even, performance…

You can unit test performance in a number of ways

Examine spec for performance constraints

Time individual methods, classes, modules, subsystems

Make an assertion that elapsed time is less than or equal to the
time specified in the spec.

Or, create a timer and start it, run code and cancel timer; if
timer goes off, assert(false) to trigger test failure

60

Wrapping Up

Development Techniques

Write tests first, then code to make those tests pass

After they pass, look for duplication between test code and
production code; refactor the latter to eliminate duplication
while ensuring that tests still pass

Development Principles

TDD forces you to focus on functionality; “client” perspective

Automate your tests to make refactoring safer

Covering all of your functionality leads to code coverage

61

Coming Up

Lecture 23: Safety & Liveness Properties

Read Chapter 7 of the Concurrency textbook

May also move on to Chapter 8 in that lecture

Lecture 24: Ending an Iteration

Read Chapter 9 of Head First Software Development

62

