Thread Libraries &

Scala Agents

Kenneth M. Anderson
University of Colorado, Boulder
CSCIl 5828 — Lecture 19 — 03/16/2010

© University of Colorado, 2010




(Goals

» Threading Libraries
» Review material from Chapter 5 of Breshears

» Implicit Threading

» OpenMP, Intel Threading Building Blocks, Scala Agent Model,
go’s goroutines, Clojure’s concurrency constructs...

» Explicit Threading
» Pthreads, Windows Threads, JDK, ruby, python, etc.

» Introduce the Scala Agent Model




(Goals

» Threading Libraries
» Review material from Chapter 5 of Breshears

» Implicit threading libraries manage threads for you
» OpenMP, Intel Threading Building Blocks, ...

» Explicit Threading
» Pthreads, Windows Threads, ...

» Introduce the Scala Agent Model




Implicit Threading

» Implicit threading libraries handle the task of
» creating,
» managing, and
» synchronizing threads

» If your concurrency needs can be handled by the limited
features of an implicit threading library then

» you can write concurrent programs and not bother with the
details of thread management

» We will only show high-level examples in this lecture




Examples

» OpenMP

A set of compiler directives, library routines and environment
variables that specify shared-memory concurrency in
FORTRAN, C, and C++

» Intel Threading Building Blocks

A C++ template-based library for loop-level parallelism that
concentrates on defining tasks rather than explicit threads

» Many others

e.g. Scala agent model, go’s goroutines, Clojure’s refs, atoms
& agents, etc.




» OpenMP directives indicate code that can be executed in
parallel; such sections are called parallel regions

These directives control how code is assigned to threads
To define a parallel region in C++, use a pragma

» #pragma omp parallel

This pragma will be followed by a block of code (or even a
single statement) which will be assigned to threads
automatically, executed in parallel and automatically joined
back to the main thread of control




OpenMP (II)

» The omp for construct will make a for loop concurrent
There are options for static and dynamic scheduling

There are options to make statements atomic or to ensure
that only a single thread executes a statement’

There are options for specifying reductions (combining a set
of values across multiple threads into a single value)

Finally, OpenMP provides features for creating thread-local
storage:

» for instance, loop variables are made thread specific, as are
any variables declared inside a parallel region




Returning to P

» We return to the multithreaded program we saw earlier this
semester that calculates an approximate value of PI

» The example code demonstrates an OpenMP parallel region
with thread local storage and an automatic reduction

» In particular

#pragma omp parallel for private(mid, height) reduction(+:sum)

» parallel section, parallel for loop
» private vars mid and height

» automatic reduction of sum variable across threads using
the plus operator, storing result in sum




static long num rects = 1000000;

int main(int argc, char* argv[]) {
double mid, height, width, sum = 0.0;
int 1;
double area;

width = 1.0/ (double)num_rects;

#pragma omp parallel for private(mid, height)
reduction(+:sum)
for (1 = 0; 1 < num_rects; 1++) {
mid = (i + 0.5) * width;
height = 4.0/(1.0*mid*m1id) ;
sum += height;

}

area = width * sum;
printf(“The value of PI is %f\n”, area);
return 0;



Results?

» Work being assigned to both cores on this machine
» but utilization never goes over 100% CPU for this process
» Not clear why performance is not higher

» but, I didn’t have to write a single line of code to create
threads, assign work to them, worry about sharing values
across threads, synchronizing them, etc.




Explicit Threading

» Explicit threading libraries require the programmer to
control all aspects of threading, including

» creating threads
» assigning tasks
» synchronizing/controlling interactions between threads

» managing shared resources




Examples

» Pthreads

» Stands for POSIX threads, available on a wide number of
platforms

» Window Threads

» Similar library created by Microsoft for Windows platform

» BUT, explicit threading libraries are available in any
language in which thread creation/management are the
responsibility of the programmer: Java, ruby, python, C#, C,
etc.




Pthreads

» Provides basic concurrency primitives to C programs

> pt
> pt
> pt
> pt
> pt

nread_t Is core data structure
nread create creates new threads
nread_join will join a thread to the main thread of control

nread_mutex_lock provides mutual exclusion

nread_cond_wait() and pthread_cond_signal() provide

functionality similar to Java’s wait() and notify() methods

» Demonstration




Alternative Approaches

e As a result of these concerns, computer scientists have searched for other
ways to exploit concurrency

® in particular using techniques from functional programming

e Functional programming is an approach to programming language design in
which functions are

e first class values (with the same status as int or string)

® you can pass functions as arguments, return them from functions and
store them in variables

¢ and have no side effects
¢ they take input and produce output

e this typically means that they operate on immutable values

14



—xample (l)

¢ In python, strings are immutable
a = “Ken @@@”
b = a.replace(“@”, “!”)
b
'Ken !
a
'Ken @@@'

e replace() is a function that takes an immutable value and produces a new
Immutable value with the desired transformation; it has no side effects

15



—xample (I1)

e Functions as values (in python)
def Foo(x, y):

return x + vy

add = Foo
add (2, 2)
- 4

e Here, we defined a function, stored it in a variable, and then used the “call
syntax” with that variable to invoke the function that it pointed at

16



—xample (ll)

e continuing from previous example
def DolIt(fun, x, y): return fun(x,y)
Dolt (add, 2, 2)
° 4
® Here, we defined a function that accepts three values:
e some other function and two arguments

¢ \\e then invoked that function by passing our add function along with two
arguments ;

e Dolt() is an example of higher-order functions: functions that take functions as
parameters

e Higher-order functions are a common idiom in functional programming

17



Relationship to Concurrency?

e How does this relate to concurrency?
e |t offers a new model for designing concurrent systems

e Fach thread operates on immutable data structures using functions
with no side effects

e A thread’s data structures are not shared with other threads
e \Work is performed by passing messages between threads

e |f one thread requires data from another that data is copied and then
sent

e Such an approach allows each thread to act like a single-threaded program;
no danger of interference

18



Map, Filter, Reduce

e Three common higher order functions are map, filter, reduce
e map(fun, list) -> list

e Applies fun() to each element of list; returns results in new list
e filter(fun, list) -> list

e Applies boolean fun() to each element of list; returns new list containing
those members of list for which fun() returns True

e reduce(fun, list) -> value

e Returns a value by applying fun() to successive members of list (total = fun
(list[O], list[1]); total = fun(total, list[2]); ...)

19



—Xamples

e list = [10, 20, 30, 40, 50]

e def double(x): return 2 * x
e def limit(x): return x > 30

e def add(x,y): return x +y

e map(double, list) returns [20, 40, 60, 80, 100]
e filter(limit, list) returns [40, 50]

e reduce(add, list) returns 150

20



Implications

e map is very powerful

e especially when you consider that you can pass a list of functions to it and
then pass a higher-order function as the function to be applied

e for example
e def Dolt(x): return x()

e map(Dolt, [t(), g(), h(), i0), j0, k0))

e But the real power, with respect to concurrency is that map is simply an
abstraction that can, in turn, be implemented in a number of ways

21



Single Threaded Map

¢ \We could for instance implement map() like this:
e def map(fun, list):
e results =[]
e for item in list:
e results.append(fun(item))
e return results

e This would implement map in a single threaded fashion

22



Multi-threaded Map

e \We could also implement map like this (pseudocode):
e def Mapper(Thread):

* def run(): complete in any order

e self.results = map(fun, list) since each computation

e def xmap(fun, list): IS independent

e split list into N parts where N = number of cores

e create N instances of Mapper(fn, list_i)

e wait for each thread to end (in order) and grab results
e append thread results to xmap results

® return xmap results

23



Super Powerful Map

¢ \We could also implement map like this:
e def supermap(fun, list):
e divide list into N parts where N equals # of machines
e send list_i to machine | which then invokes xmap
e wait for results from each machine
e combine into single list and return

e Given this implementation, you can apply a very complicated function to a
very large list and have (potentially) thousands of machines leap into action to
compute the answer

24



Google

¢ Indeed, this is what Google does when you submit a search query:
e def aboveThreshold(x): return x > 0.5 <-- just making this up

e def probabilityDocumentRelatedToSearchTerm(doc): ...

e searchResults =
e filter(aboveThreshold,
e map(probabilityDocumentRelatedToSearchTerm,

¢ [<entire contents of the Internet)))

25



Difference between map and xmap?

* The team behind Erlang published results concerning the difference between
map and xmap

* They make a distinction between
e CPU-bound computations with little message passing vs.
e [ightweight computations with lots of message passing

e With the former, xmap provides linear speed-up (10 CPUs provides a 10x
speed-up, then declining) over map

e the latter less so (10 CPUs provided 4x speed-up)

¢ Indeed, xmap’s performance in the latter case tends to max out at 4x no
matter how many CPUs were added

26



Agent Model

e The functional language Erlang is credited with creating an approach to
concurrency known as the agent model

e A concurrent program consists of a set of agents

e Each agent has its own set of data structures that are not shared with
other agents

e Agents can perform computations and send messages

® Messages sit in an actor’s mailbox until it is ready to process them; they
are always processed one at a time

e An actor does not block when sending a message

e An actor is not interrupted when a message arrives

27



—Xamples

e Examples will be presented in Scala

e Scala is a language which nicely combines both the imperative and
functional programming styles

e |t is implemented on top of Java and thus is cross platform

e | won’t spend much time explaining Scala; I’ll just focus on the agent
model

28



—xample 1

® import scala.actors._

e object SillyActor extends Actor { e object SeriousActor extends Actor {
e def act() { e def act() {
e for (i <- 1to 5) { o for (i <- 1to 5) {
e printin(*I’'m acting!”) e println(“To be or not to
e Thread.sleep(1000) be’)
. e Thread.sleep(1000)
. °}
.) °}



Running Example 1

e SillyActor.start() ; SeriousActor.start()
e Demo

* From this example we can see that Actor is a class that can be sub-
classed (just like Thread in Java)

e You start an actor by calling start()
e At some point, the scheduler calls the actor’s act() method
e The actor will be active until that method returns

e This is just like Thread’s run() method, only the name has changed

30



Processing Messages

¢ To process a message, an actor must use either the receive or react keyword
e react is a special case of receive that we’ll discuss below

¢ You can think of receive as a “switch” statement that specifies the structure
of the different type of messages it wants to receive

e \When an actor calls receive, it looks at the mailbox and attempts to find a
waiting message that matches one of the branches of the “switch”
statement

e it processes the first match that it finds

31



—Xample

e val echoActor = actor { A message Is sent with the | operator:

* while (true) { echoActor | “hi there”

e receive { echoActor | 25

* case msg =>

e printIn(“received message: “ + msg)

.} Demo

°}
°}

e This actor loops forever and prints out any message it receives

32



Conserve Threads

e \When an act() method uses the receive keyword, it tells the scala run-time
system that this actor needs its own thread

* The actor may be spending its time switching between processing
messages and performing a long computation

e Since threads in Java are not cheap, scala provides the react keyword to tell
the runtime that all this thread does is react to messages

e This means it spends most of its time blocked

e Scala uses this information to assign “react actors” to a single thread,
thus conserving threads in the overall system

33



—Xample

e object NameResolver extends Actor {

e def act() {

e react {

°}

e case (hame: String, actor: Actor) =>
e actor ! getlp(name)
e act()

e case “EXIT” =>

e printIn(“quitting”)

Note: no explicit loop;
that’s because react
doesn’t return (enables
sharing of multiple
actors on a single
thread)

iInstead, react must call
act() if it wants to keep
waiting for messages

34



Results

e To test Scala’s claim that react helps conserve threads

e | wrote a program that can create a specified number of NameResolvers
that either

® USe receive or
® Use react
e Results: when creating 100 NameResolvers
¢ using receive: 104 threads created

e using react: 7 threads created (!)

35



Returning to the Ornamental Garden

¢ \With the Agent model of concurrency, you can easily avoid interference
problems

* Here’s an example of the ornamental garden problem

* No need for mutual exclusion: create two agents that act as turnstiles
and have them send increment messages to a shared counter agent

¢ \We saw this last week In lecture 18

36



Hiding Concurrency...

e An agent-based approach can start to hide concurrency from the developer
e the implicit threading approach...
e as we will see In this next example

e TopStock -> retrieve stock quotes from a specified set of stocks for a
specified year and lists the one with the highest 52-week price.

* The quotes are requested in parallel and handled when the main thread is
ready for them

e Demonstration

37



Summary: Alternative Approach

¢ \We have looked at a few alternative models to the “locks and shared data”
model of concurrency that

e draw on functional programming techniques
e do not allow threads to share data
¢ allow threads to communicate via asynchronous messages

¢ Deadlock and Race conditions are still possible in this model but harder to
achieve

e However, interference is simply not possible in this model

® Functional techniques seem like a promising method for tackling concurrency
on multi-core hardware

38



Wrapping Up

» Threading Libraries
» Implicit threading libraries manage threads for you

» Explicit threading libraries provide primitives, the rest is up to
you

» Introduced the Scala Agent Model

» which is an example of an implicit threading library

» Using receive() in an agent typically causes the creation of a
thread

» Using react() in an agent typically causes the agent to be share
a thread with other “reactive” agents




Coming Up

» Lecture 20: Testing and Continuous Integration

» Read Chapter 7 of the Head First Software Development
textbook




