
© University of Colorado, 2010

Thread Libraries &
Scala Agents
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 19 — 03/16/2010

1

Goals

Threading Libraries

Review material from Chapter 5 of Breshears

Implicit Threading

OpenMP, Intel Threading Building Blocks, Scala Agent Model,
go’s goroutines, Clojure’s concurrency constructs...

Explicit Threading

Pthreads, Windows Threads, JDK, ruby, python, etc.

Introduce the Scala Agent Model

2

Goals

Threading Libraries

Review material from Chapter 5 of Breshears

Implicit threading libraries manage threads for you

OpenMP, Intel Threading Building Blocks, …

Explicit Threading

Pthreads, Windows Threads, …

Introduce the Scala Agent Model

3

Implicit Threading

Implicit threading libraries handle the task of

creating,

managing, and

synchronizing threads

If your concurrency needs can be handled by the limited
features of an implicit threading library then

you can write concurrent programs and not bother with the
details of thread management

We will only show high-level examples in this lecture

4

Examples

OpenMP

A set of compiler directives, library routines and environment
variables that specify shared-memory concurrency in
FORTRAN, C, and C++

Intel Threading Building Blocks

A C++ template-based library for loop-level parallelism that
concentrates on defining tasks rather than explicit threads

Many others

e.g. Scala agent model, go’s goroutines, Clojure’s refs, atoms
& agents, etc.

5

OpenMP (I)

OpenMP directives indicate code that can be executed in
parallel; such sections are called parallel regions

These directives control how code is assigned to threads

To define a parallel region in C++, use a pragma

#pragma omp parallel

This pragma will be followed by a block of code (or even a
single statement) which will be assigned to threads
automatically, executed in parallel and automatically joined
back to the main thread of control

6

OpenMP (II)

The omp for construct will make a for loop concurrent

There are options for static and dynamic scheduling

There are options to make statements atomic or to ensure
that only a single thread executes a statement’

There are options for specifying reductions (combining a set
of values across multiple threads into a single value)

Finally, OpenMP provides features for creating thread-local
storage:

for instance, loop variables are made thread specific, as are
any variables declared inside a parallel region

7

Returning to Pi

We return to the multithreaded program we saw earlier this
semester that calculates an approximate value of PI

The example code demonstrates an OpenMP parallel region
with thread local storage and an automatic reduction

In particular
#pragma omp parallel for private(mid, height) reduction(+:sum)

parallel section, parallel for loop

private vars mid and height

automatic reduction of sum variable across threads using
the plus operator, storing result in sum

8

static long num_rects = 1000000;

int main(int argc, char* argv[]) {
double mid, height, width, sum = 0.0;
int i;
double area;

width = 1.0/(double)num_rects;

#pragma omp parallel for private(mid, height)
reduction(+:sum)

for (i = 0; i < num_rects; i++) {
mid = (i + 0.5) * width;
height = 4.0/(1.0*mid*mid);
sum += height;

}

area = width * sum;
printf(“The value of PI is %f\n”, area);
return 0;

}

9

Work being assigned to both cores on this machine

but utilization never goes over 100% CPU for this process

Not clear why performance is not higher

but, I didn’t have to write a single line of code to create
threads, assign work to them, worry about sharing values
across threads, synchronizing them, etc.

10Results?

Explicit Threading

Explicit threading libraries require the programmer to
control all aspects of threading, including

creating threads

assigning tasks

synchronizing/controlling interactions between threads

managing shared resources

11

Examples

Pthreads

Stands for POSIX threads, available on a wide number of
platforms

Window Threads

Similar library created by Microsoft for Windows platform

BUT, explicit threading libraries are available in any
language in which thread creation/management are the
responsibility of the programmer: Java, ruby, python, C#, C,
etc.

12

Pthreads

Provides basic concurrency primitives to C programs

pthread_t is core data structure

pthread_create creates new threads

pthread_join will join a thread to the main thread of control

pthread_mutex_lock provides mutual exclusion

pthread_cond_wait() and pthread_cond_signal() provide
functionality similar to Java’s wait() and notify() methods

Demonstration

13

Alternative Approaches

• As a result of these concerns, computer scientists have searched for other
ways to exploit concurrency

• in particular using techniques from functional programming

• Functional programming is an approach to programming language design in
which functions are

• first class values (with the same status as int or string)

• you can pass functions as arguments, return them from functions and
store them in variables

• and have no side effects

• they take input and produce output

• this typically means that they operate on immutable values

14

Example (I)

• In python, strings are immutable

a = “Ken @@@”

b = a.replace(“@”, “!”)

b

'Ken !!!'

a

'Ken @@@'

• replace() is a function that takes an immutable value and produces a new
immutable value with the desired transformation; it has no side effects

15

Example (II)

• Functions as values (in python)

def Foo(x, y):

 return x + y

add = Foo

add(2, 2)

 → 4

• Here, we defined a function, stored it in a variable, and then used the “call
syntax” with that variable to invoke the function that it pointed at

16

Example (III)

• continuing from previous example

def DoIt(fun, x, y): return fun(x,y)

DoIt(add, 2, 2)

• 4

• Here, we defined a function that accepts three values:

• some other function and two arguments

• We then invoked that function by passing our add function along with two
arguments ;

• DoIt() is an example of higher-order functions: functions that take functions as
parameters

• Higher-order functions are a common idiom in functional programming

17

Relationship to Concurrency?

• How does this relate to concurrency?

• It offers a new model for designing concurrent systems

• Each thread operates on immutable data structures using functions
with no side effects

• A thread’s data structures are not shared with other threads

• Work is performed by passing messages between threads

• If one thread requires data from another that data is copied and then
sent

• Such an approach allows each thread to act like a single-threaded program;
no danger of interference

18

Map, Filter, Reduce

• Three common higher order functions are map, filter, reduce

• map(fun, list) -> list

• Applies fun() to each element of list; returns results in new list

• filter(fun, list) -> list

• Applies boolean fun() to each element of list; returns new list containing
those members of list for which fun() returns True

• reduce(fun, list) -> value

• Returns a value by applying fun() to successive members of list (total = fun
(list[0], list[1]); total = fun(total, list[2]); …)

19

Examples

• list = [10, 20, 30, 40, 50]

• def double(x): return 2 * x

• def limit(x): return x > 30

• def add(x,y): return x + y

• map(double, list) returns [20, 40, 60, 80, 100]

• filter(limit, list) returns [40, 50]

• reduce(add, list) returns 150

20

Implications

• map is very powerful

• especially when you consider that you can pass a list of functions to it and
then pass a higher-order function as the function to be applied

• for example

• def DoIt(x): return x()

• map(DoIt, [f(), g(), h(), i(), j(), k()])

• But the real power, with respect to concurrency is that map is simply an
abstraction that can, in turn, be implemented in a number of ways

21

Single Threaded Map

• We could for instance implement map() like this:

• def map(fun, list):

• results = []

• for item in list:

• results.append(fun(item))

• return results

• This would implement map in a single threaded fashion

22

Multi-threaded Map

• We could also implement map like this (pseudocode):

• def Mapper(Thread):

• def __init__(… fun, list): …

• def run():

• self.results = map(fun, list)

• def xmap(fun, list):

• split list into N parts where N = number of cores

• create N instances of Mapper(fn, list_i)

• wait for each thread to end (in order) and grab results

• append thread results to xmap results

• return xmap results

23

Note: threads can
complete in any order
since each computation
is independent

Super Powerful Map

• We could also implement map like this:

• def supermap(fun, list):

• divide list into N parts where N equals # of machines

• send list_i to machine i which then invokes xmap

• wait for results from each machine

• combine into single list and return

• Given this implementation, you can apply a very complicated function to a
very large list and have (potentially) thousands of machines leap into action to
compute the answer

24

Google

• Indeed, this is what Google does when you submit a search query:

• def aboveThreshold(x): return x > 0.5 <-- just making this up

• def probabilityDocumentRelatedToSearchTerm(doc): …

• searchResults =

• filter(aboveThreshold,

• map(probabilityDocumentRelatedToSearchTerm,

• [<entire contents of the Internet]))

25

Difference between map and xmap?

• The team behind Erlang published results concerning the difference between
map and xmap

• They make a distinction between

• CPU-bound computations with little message passing vs.

• lightweight computations with lots of message passing

• With the former, xmap provides linear speed-up (10 CPUs provides a 10x
speed-up, then declining) over map

• the latter less so (10 CPUs provided 4x speed-up)

• Indeed, xmap’s performance in the latter case tends to max out at 4x no
matter how many CPUs were added

26

Agent Model

• The functional language Erlang is credited with creating an approach to
concurrency known as the agent model

• A concurrent program consists of a set of agents

• Each agent has its own set of data structures that are not shared with
other agents

• Agents can perform computations and send messages

• Messages sit in an actor’s mailbox until it is ready to process them; they
are always processed one at a time

• An actor does not block when sending a message

• An actor is not interrupted when a message arrives

27

Examples

• Examples will be presented in Scala

• Scala is a language which nicely combines both the imperative and
functional programming styles

• It is implemented on top of Java and thus is cross platform

• I won’t spend much time explaining Scala; I’ll just focus on the agent
model

28

Example 1

• import scala.actors._

• object SillyActor extends Actor {

• def act() {

• for (i <- 1 to 5) {

• println(“I’m acting!”)

• Thread.sleep(1000)

• }

• }

• }

• }

• object SeriousActor extends Actor {

• def act() {

• for (i <- 1 to 5) {

• println(“To be or not to
be”)

• Thread.sleep(1000)

• }

• }

• }

Running Example 1

• SillyActor.start() ; SeriousActor.start()

• Demo

• From this example we can see that Actor is a class that can be sub-
classed (just like Thread in Java)

• You start an actor by calling start()

• At some point, the scheduler calls the actor’s act() method

• The actor will be active until that method returns

• This is just like Thread’s run() method, only the name has changed

30

Processing Messages

• To process a message, an actor must use either the receive or react keyword

• react is a special case of receive that we’ll discuss below

• You can think of receive as a “switch” statement that specifies the structure
of the different type of messages it wants to receive

• When an actor calls receive, it looks at the mailbox and attempts to find a
waiting message that matches one of the branches of the “switch”
statement

• it processes the first match that it finds

31

Example

• val echoActor = actor {

• while (true) {

• receive {

• case msg =>

• println(“received message: “ + msg)

• }

• }

• }

• This actor loops forever and prints out any message it receives

32

A message is sent with the ! operator:

echoActor ! “hi there”
echoActor ! 25

Demo

Conserve Threads

• When an act() method uses the receive keyword, it tells the scala run-time
system that this actor needs its own thread

• The actor may be spending its time switching between processing
messages and performing a long computation

• Since threads in Java are not cheap, scala provides the react keyword to tell
the runtime that all this thread does is react to messages

• This means it spends most of its time blocked

• Scala uses this information to assign “react actors” to a single thread,
thus conserving threads in the overall system

33

Example

• object NameResolver extends Actor {

• …

• def act() {

• react {

• case (name: String, actor: Actor) =>

• actor ! getIp(name)

• act()

• case “EXIT” =>

• println(“quitting”)

• }

• …

34

Note: no explicit loop;
that’s because react
doesn’t return (enables
sharing of multiple
actors on a single
thread)

instead, react must call
act() if it wants to keep
waiting for messages

Results

• To test Scala’s claim that react helps conserve threads

• I wrote a program that can create a specified number of NameResolvers
that either

• use receive or

• use react

• Results: when creating 100 NameResolvers

• using receive: 104 threads created

• using react: 7 threads created (!)

35

Returning to the Ornamental Garden

• With the Agent model of concurrency, you can easily avoid interference
problems

• Here’s an example of the ornamental garden problem

• No need for mutual exclusion: create two agents that act as turnstiles
and have them send increment messages to a shared counter agent

• We saw this last week in lecture 18

36

Hiding Concurrency…

• An agent-based approach can start to hide concurrency from the developer

• the implicit threading approach…

• as we will see in this next example

• TopStock -> retrieve stock quotes from a specified set of stocks for a
specified year and lists the one with the highest 52-week price.

• The quotes are requested in parallel and handled when the main thread is
ready for them

• Demonstration

37

Summary: Alternative Approach

• We have looked at a few alternative models to the “locks and shared data”
model of concurrency that

• draw on functional programming techniques

• do not allow threads to share data

• allow threads to communicate via asynchronous messages

• Deadlock and Race conditions are still possible in this model but harder to
achieve

• However, interference is simply not possible in this model

• Functional techniques seem like a promising method for tackling concurrency
on multi-core hardware

38

Wrapping Up

Threading Libraries
Implicit threading libraries manage threads for you

Explicit threading libraries provide primitives, the rest is up to
you

Introduced the Scala Agent Model
which is an example of an implicit threading library

Using receive() in an agent typically causes the creation of a
thread

Using react() in an agent typically causes the agent to be share
a thread with other “reactive” agents

39

Coming Up

Lecture 20: Testing and Continuous Integration

Read Chapter 7 of the Head First Software Development
textbook

40

