
© University of Colorado, 2010

Build Management
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 17 — 03/09/2010

1

Goals

Review material from Chapter 6.5 of Pilone & Miles

Build Management

How do you build your code

Examples

make

Ant

IDEs

2

Build Management (I)

The process for constructing a system should be engineered

What are the steps to build a system?

what subsystems need to be built?

what libraries are needed?

what resources are required?

3

Build Management (II)

The process for constructing a system should be engineered

Who is authorized to build a system?

Small projects: individual programmers

Large projects: build managers and/or configuration managers

4

Build Management (III)

The process for constructing a system should be engineered

When are system builds performed?

e.g. perhaps a system is so large that it can only be built at
night when there are enough resources available…

5

Build Management (IV)

Most modern programming environments have build
management capabilities built into them

For instance, a Java development environment typically has the
notion of a “project” and it can compile all project files in the
correct order (and it only compiles files dependent on a change)

These capabilities free developers from accidental difficulties

having to remember the correct compilation order

correctly identifying all files dependent on a change

6

Make: The Granddaddy of
Build Management Systems

In Unix, a common build management tool is “make”

Make provides very powerful capabilities via three types of
specification styles

declarative

imperative

relational

These styles are combined into one specification

“the make file”

7

Why talk about Make?

In modern projects, make is not used directly

IDEs: have build management features built in

modern build tools: ant, maven, etc. operate at a higher level

open source environments: autoconf and configure generate
makefiles: developers write configure specs, autoconf does
the rest

The reason?

The same reason calculus students learn how to do limits the
“hard way” before they are taught l'Hôpital's rule

8

http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Specification Styles?

Operational (or Imperative)
Described according to desired actions
Usually given in terms of an execution model

Descriptive (or Declarative)
Described according to desired properties
Usually given in terms of axioms or algebras

Structural (or Relational)
Described according to desired relationships
Usually given in terms of a graph

e.g. UML class diagrams

9

make Specification Language

Hybrid Declarative/Imperative/Relational

Dependencies are Relational

Make specifies dependencies between artifacts

Rules are Declarative

Make specifies rules for creating new artifacts

Actions are Imperative

Make specifies actions to carry out rules

This is true of ant and other tools with similar specs.

10

Example makefile

Target1: Target2 Target3 … TargetN
 \t Action1
 \t Action2
 \t …
 \t ActionN

Target2: Target5 Target6
 \t Action3

Target3: Target5 Target7
 \t Action4

11

A Makefile consists of a set of rules.

Each rule contains a target followed by a
colon followed by a list of dependencies

Each subsequent line of a rule begins with
a tab character (required) followed by an
action

If a dependency changes, make invokes a
rule's action to recreate the target

What would happen if Target5 changed?

Power from Integration

make is well integrated into the Unix environment

Targets and Dependencies are file names

Actions are shell commands

12

program: main.o input.o output.o
 g++ main.o input.o output.o -o program

main.o: main.cpp defs.h
 g++ -c main.cpp

input.o: input.cpp defs.h
 g++ -c input.cpp

output.o: output.cpp defs.h
 g++ -c output.cpp

When you realize that any
shell command can go
here, you begin to grok
the power of make

It is possible to automate
the creation and
deployment of large
systems with make

Why use make at all?

Why use all the complexity of multiple specification styles
when ultimately make just invokes shell commands?

Why not just write a shell script?

13

#!/bin/bash
g++ -c main.cpp
g++ -c input.cpp
g++ -c output.cpp
g++ main.o input.o output.o -o program

What style does this specification use?

Why not use a shell script?

The (Primary) Answer

A shell script will compile each file every time its run… even if
the file has not changed since the last compilation!

When building large systems, such an approach does not
scale!

You only want to recompile changed files and the files that
depend on them

Make is much “smarter”

by only recompiling changed files and their dependencies,
make can scale to building large software systems

14

make wrap-up

Build management has been around a long time

make was created by Stuart Feldman in 1977

Feldman was part of the group that created Unix at Bell Labs

He was an author of the first Fortran 77 compiler

Now works for Google as Vice President of Engineering (East
Coast)

When you click “build” in your IDE and it builds your
project, you have make to thank

15

The Textbook Scenario

The book highlights another reason for build management

Configuration Management is not enough to support the day
to day tasks of software development

If a new developer joins the team, simply checking out a copy
of HEAD is not enough

How do I compile the system?

A search finds five main() methods, which one do I invoke?

What configuration do I have to do before the system will run?

16

Building your project in one
step

Build management is all about reducing the complexity of
creating your system

You do some work up front

Then invoke a single command: “make” or “ant”

Then run your system

As the book says, modern applications are complex beasts

consisting of not just code, but libraries (aka frameworks),
resources (images, sounds, movies, etc.) and more

17

18

Example: Applications in Mac OS X Finder

19

But look behind the curtain: Apps in Mac OS X Terminal

20

Apps are just directories whose names end in the
suffix .app; those pretty icons just live in a standard pre-
defined place in the “application bundle” or “package”

21How complex?

Lets take a look at the application bundle for

OmniGraffle Pro

The application I use to create all of my diagrams

As we will see, it contains

Code

Frameworks, Libraries, Plugins, Scripts

Images (tiff, png, icons, …), color pickers (!)

nib files (“frozen” objects), “localized” files for
internationalization, etc.

http://www.omnigroup.com/applications/OmniGraffle/
http://www.omnigroup.com/applications/OmniGraffle/

22Ant

The book delves into the details of Ant

Ant is a build system that is used mainly for Java-based
software development

The specification is contained in an XML file called
“build.xml”

This specification consists of

projects

properties

targets

tasks

Projects

The build.xml file exists to build a single project

<project name=“BeatBox” default=“dist”>

It defines the name of the project and its default target

The default target is the target that gets executed if “ant” is
invoked with no arguments

23

Properties

Properties allow you to define values that might change

<property name= “version” value = “1.1” />

<property name= “src” location= “src” />

Note: location field supports both absolute and relative paths

Build scripts == Code

Since build scripts are executable, we want to apply best
practices when writing them

So, if something about a build script can change stick it in a
properties (i.e. variable)

24

Targets

A target is an “intermediate” step in the build process

In make, they represented files and contained the actions
required to produce the associated file

e.g. “to create foo.o compile foo.c”

In ant, targets typically represent stages

init, compile, test, package, deploy, clean

Targets have names and dependencies and group tasks

<target name= “compile” depends= “init”>

25

Tasks

Tasks are actions that need to be performed to complete
the goal of its associated target
If an “init” target needs to create a bunch of directories and
copy a bunch of files into them then its tasks might look like

<mkdir dir= “${build.dir}” />
<copy todir="${build.dir}/metis/gui/help">
 <fileset dir="gui/help"/>
</copy>
…

${var} is a prop. reference; You can create your own tasks

26

Good Build Scripts will…

reference required libraries

compile your project

generate documentation

run your application

check out code, run tests, send e-mail, etc.

(all via supplied tasks or custom tasks)

27

Examples

InfiniTe build.xml file

metis build.xml file

Build management in XCode

Visual Studio, Eclipse, NetBeans have similar capabilities

28

Why do all this?

We’ve touched on the fact that build management reduces
accidental difficulties but the primary reason is that

build management lets you focus on writing code

it automates repetitive tasks so you can focus on completing
user stories and making progress

In addition, it allows you to tackle integration and
deployment issues early in the life cycle

and ensures that this process stays stable throughout the
project; if someone “breaks the build” you find out quickly!

29

Wrapping Up

Building a project should be repeatable and automated

All but the smallest projects have a nontrivial build process

You want to capture and automate the knowledge of how to
build your system, ideally in a single command

Build scripts are code (executable specifications) that need
to be managed just like other pieces of code

Use a build tool to script building, packaging, testing, and
deploying your system

Most IDEs have an integrated build system

30

Coming Up

Lecture 18: Shared Objects and Mutual Exclusion

Material drawn from the optional textbook

31

