Bulld Management

Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 17 — 03/09/2010

© University of Colorado, 2010

(Goals

» Review material from Chapter 6.5 of Pilone & Miles
» Build Management
» How do you build your code

» Examples

» make
» Ant
» |IDEs

Build Management (|)

» The process for constructing a system should be engineered

» What are the steps to build a system?

> W
> W
> W

nat subsystems need to be built?

nat libraries are needed?

nat resources are required?

Build Management (lI)

» The process for constructing a system should be engineered
» Who is authorized to build a system?
» Small projects: individual programmers

» Large projects: build managers and/or configuration managers

Build Management (lIl)

» The process for constructing a system should be engineered

» When are system builds performed?

» e.g. perhaps a system is so large that it can only be built at
night when there are enough resources available...

Build Management (IV)

» Most modern programming environments have build
management capabilities built into them

For instance, a Java development environment typically has the
notion of a “project” and it can compile all project files in the
correct order (and it only compiles files dependent on a change)

» These capabilities free developers from accidental difficulties
having to remember the correct compilation order

correctly identifying all files dependent on a change

Make: The Granddaddy of

Build Management Systems

» In Unix, a common build management tool is “make”

» Make provides very powerful capabilities via three types of
specification styles

» declarative
» imperative
» relational
» These styles are combined into one specification

» “the make file”

Why talk about Make"?

» In modern projects, make is not used directly

IDEs: have build management features built in
modern build tools: ant, maven, etc. operate at a higher level

open source environments: autoconf and configure generate
makefiles: developers write configure specs, autoconf does

the rest

» The reason?

The same reason calculus students learn how to do limits the
“hard way” before they are taught I'HGpital's rule

http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule
http://en.wikipedia.org/wiki/L'H%C3%B4pital's_rule

Specification Styles”?

» Operational (or Imperative)
Described according to desired actions
Usually given in terms of an execution model
» Descriptive (or Declarative)
Described according to desired properties
Usually given in terms of axioms or algebras
» Structural (or Relational)
Described according to desired relationships

Usually given in terms of a graph
» e.g. UML class diagrams

make Specification Language

» Hybrid Declarative/Imperative/Relational
» Dependencies are Relational
» Make specifies dependencies between artifacts
» Rules are Declarative
» Make specifies rules for creating new artifacts

» Actions are Imperative

» Make specifies actions to carry out rules

» This is true of ant and other tools with similar specs.

Example maketile

Target1: Target2 Target3 ... TargetN

\t Action A Makefile consists of a set of rules.
\t Action2
\t Each rule contains a target followed by a

colon followed by a list of dependencies

\t ActionN

_ Each subsequent line of a rule begins with
Targetz' Target5 Target6 a tab character (required) followed by an

\t Action3 action

TargetS: Target5 Target? If a dependency changes, make invokes a
\t Action4 rule's action to recreate the target

What would happen if Target5 changed?

Power from Integration

» make is well integrated into the Unix environment
Targets and Dependencies are file names

Actions are shell commands When you realize that any

program: main.o input.o output.o shell command can go
g++ main.o input.o output.o -o program here, you begin to grok

main.o: main.cpp defsﬂ/the power of make
g++ -C main.cpp

input.o: input.cpp defs.h It is possible to automate
g++ -C input.cpp the creation and
output.o: output.cpp defs.h deployment of large

g++ -Cc output.cpp systems with make

Why use make at all”

» Why use all the complexity of multiple specification styles
when ultimately make just invokes shell commands?

Why not just write a shell script?

#!/bin/bash

g++ -C main.cpp

g++ -C input.cpp

g++ -C output.cpp

g++ main.o input.o output.o -o program

N

What style does this specification use?

Why not use a shell script?

» The (Primary) Answer

A shell script will compile each file every time its run... even if
the file has not changed since the last compilation!

» When building large systems, such an approach does not
scale!

You only want to recompile changed files and the files that
depend on them

» Make is much “smarter”

by only recompiling changed files and their dependencies,
make can scale to building large software systems

make wrap-up

» Build management has been around a long time

» make was created by Stuart Feldman in 1977
» Feldman was part of the group that created Unix at Bell Labs
» He was an author of the first Fortran 77 compiler

» Now works for Google as Vice President of Engineering (East
Coast)

» When you click “build” in your IDE and it builds your
project, you have make to thank

The Textbook Scenario

» The book highlights another reason for build management

Configuration Management is not enough to support the day
to day tasks of software development

If a new developer joins the team, simply checking out a copy
of HEAD is not enough

» How do | compile the system?
» A search finds five main() methods, which one do | invoke?

» What configuration do | have to do before the system will run?

Building your project in one

Step

» Build management is all about reducing the complexity of
creating your system

» You do some work up front
» Then invoke a single command: “make” or “ant”
» Then run your system
» As the book says, modern applications are complex beasts

» consisting of not just code, but libraries (aka frameworks),
resources (images, sounds, movies, etc.) and more

Example: Applications in Mac OS X Finder

(2 /Applications =

600

¥ DEVICES .
| jiriki - r
£ iDisk
2} Macintosh HD

¥ PLACES
¥4 Desktop
&5 Downloads
Mail Downloads
£ kena

/- . Applications

Neon Tango Folder

¥ SEARCH FOR
() Today
(1) Yesterday
() Past Week
(&) All Images -
(&) All Movies \ :: '

(&] Al Documents -

OmniGraffle Professional OmniGraffle Professional OmniWeb

—

Open XML Converter Opera Path Finder PDFView

Peggle Nights Photo Booth PhotoStudio Pixelmator

<«

-} Macintosh HD » (3§ Applications

But look behind the curtain: Apps in Mac OS X Terminal
Jiriki:Applications $ 1s s
1Password.app/ Mail.app/

>cd toapp/ MarsEdit.app/

Acrobat Connect Add-in Mathematica.app/

Address Book.app/ Microsoft AutoUpdate.app/

Adobe Acrobat 7.0 Professional/ Microsoft Office 2004/

Adobe Bridge/ Monopoly Here & Now/

Adobe Creative Suite 2/ MyBook RAID Manager.app/

Adobe GolLive (S2/ Neon Tango Folder/

Adobe Help Center.app/ NetNewsWire.app/

Adobe Illustrator (CS2/ OmniDiskSweeper.app/

Adobe InDesign (CS2/ OmniFocus.app/

Adobe Photoshop (CS2/ OmniGraffle Professional 4.app/

Adobe Photoshop Elements 4.0/ OmniGraffle Professional S5.app/

Adobe Reader.app/ OmniOutliner Professional.app/

Adobe Stock Photos.app* OmniWeb.app/

Alloy4.app/ Open XML Converter.app/

Aperture.app/ Opera.app/

AppZapper.app/ PDFView.app/

AppleScript/ Path Finder.app/

Aspyr Game Agent.app/ Peggle Nights.app({

Automator.app/ Photo Booth.app/

Avernum 5 f/ PhotoStudio/

BBEdit.app/ Pixelmator.app/

Backup.app/ Preview.app/ |
Bento.app/ Pukka.app/

Big Bang Board Games/ Python 2.6/

Apps are just directories whose names end in the
suffix .app; those pretty icons just live in a standard pre-
defined place in the “application bundle” or “package”

Adobe Photoshop tElements Adobe Keader Adobe Stock Photos Alloy4 N pt p -
s ‘uara pre
OO0 /Applications/Automator.app/Contents/Resources (=)
(> (==~ (-] =-) [(d @ O [(J Q
Back View Action Path New Folder Getlinfo Delete @ >cdto... Search
¥ DEVICES A G Contents D CodeResources AlertCautionicon.icns o
o ik M Info.plist @ AMiLife.tiff
E iDisk & Macos > ' AMStartingPoints_...cuments.workflow
= [Pkginfo & AMStartingPoints_...ebpage.workflow
2} Macintosh HD
(] Resources & AMStartingPoints_...ebpage.workflow
Ap erture ¥ PLACES version.plist A Application Stub
Desktop # Automator.icns
: © Downloads L) || Automator.scriptSuite
Q> & Mail Downloads 3 Automator.scrllptTermmology
q A kena # AutomatorAction.icns
= # AutomatorConversionAction.icns
7\ Applications # AutomatorDefinition.icns L L
"} Documents # AutomatorDocument.icns M Name Automatoricns |y
B Movies .) ClientNescrintinn nlist i Kind Apple icon image 'y
J3 Music v 2 Macintosh HD » (3 Applications » Automator » [Contents » (] Resources » [% Automator.icns
Automator 1 of 48 selected, 41.01 GB available y
800 [} Info.plist o
-t -——
: - [\‘
A
. K“v' SR Value :
AMDocumentVersion 1 .
Localization native development re English .
» Document types (5 items) : Caffeine
Executable file Automator
Get Info string Automator version 2.0.2, Copyright 2004-2007 Apple Inc. : .
Help Book directory path AutomatorHelp . v
Help Book main page CONTENT att Automator Help .
Icon file Automator.icns !
Bundle identifier com.apple.Automator ! W
InfoDictionary version 6.0 .
Bundle name Automator .
Bundle OS Type code APPL
Bundle versions string, short 2.0.2
Bundle creator OS Type code ATM |
Bundle version 160 X

How complex?

» Lets take a look at the application bundle for
» OmniGraffle Pro

» The application | use to create all of my diagrams

» As we will see, it contains
» Code
» Frameworks, Libraries, Plugins, Scripts
» Images (tiff, png, icons, ...), color pickers (!)

» nib files (“frozen” objects), “localized” files for
Internationalization, etc.

http://www.omnigroup.com/applications/OmniGraffle/
http://www.omnigroup.com/applications/OmniGraffle/

Ant

» The book delves into the details of Ant

» Ant is a build system that is used mainly for Java-based
software development

» The specification is contained in an XML file called
“puild.xml”

» This specification consists of
» projects
» properties
» targets
» tasks

Projects

» The build.xml file exists to build a single project

» <project name="BeatBox” default="dist”>

» |t defines the name of the project and its default target

» The default target is the target that gets executed if “ant” is
iInvoked with no arguments

Properties

» Properties allow you to define values that might change
» <property name= “version” value = “1.1”7 />
» <property name= “src” location= “src” />
Note: location field supports both absolute and relative paths
» Build scripts == Code

Since build scripts are executable, we want to apply best
practices when writing them

» So, if something about a build script can change stick it in a
properties (i.e. variable)

largets

» A target is an “intermediate” step in the build process

» In make, they represented files and contained the actions
required to produce the associated file

» e.g. “to create foo.0 compile foo.c”
» In ant, targets typically represent stages
» init, compile, test, package, deploy, clean
» Targets have names and dependencies and group tasks

» <target name= “compile” depends= “init”>

» Tasks are actions that need to be performed to complete
the goal of its associated target

» |f an “init” target needs to create a bunch of directories and
copy a bunch of files into them then its tasks might look like

<mkdir dir= “${build.dir}” />

<copy todir="${build.dir}/metis/gui/help">
<fileset dir="gui/help"/>

</copy>

» ${var} is a prop. reference; You can create your own tasks

Good Build Scripts will. ..

» reference required libraries

» compile your project

» generate documentation

» run your application

» check out code, run tests, send e-maiil, etc.

> (all via supplied tasks or custom tasks)

Examples

» InfiniTe build.xml file
» metis build.xml file
» Build management in XCode

» Visual Studio, Eclipse, NetBeans have similar capabilities

Why do all this?

» We’ve touched on the fact that build management reduces
accidental difficulties but the primary reason is that

» build management lets you focus on writing code

It automates repetitive tasks so you can focus on completing
user stories and making progress

» In addition, it allows you to tackle integration and
deployment issues early in the life cycle

and ensures that this process stays stable throughout the
project; if someone “breaks the build” you find out quickly!

Wrapping Up

» Building a project should be repeatable and automated
All but the smallest projects have a nontrivial build process

You want to capture and automate the knowledge of how to
build your system, ideally in a single command

» Build scripts are code (executable specifications) that need
to be managed just like other pieces of code

» Use a build tool to script building, packaging, testing, and
deploying your system

Most IDEs have an integrated build system

Coming Up

» Lecture 18: Shared Objects and Mutual Exclusion

» Material drawn from the optional textbook

