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Credit Where Credit is 
Due

Portions of these slides drawn from the course materials 
developed by Jeff Magee and Jeff Kramer for their excellent 
book

Concurrency: State Models and Java Programming, 2nd Ed.

Portions are thus copyright © John Wiley & Sons, Ltd. 2006
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Goals

Review material from chapters 1, 2 from the optional 
textbook (Concurrency: State Models and Java Programming by Magee and Kramer)

Present a model-based approach to designing concurrent 
systems

What do we mean by model-based software engineering?

Examine fundamental approach used in this book:

Concepts, Modeling, Practice

Finite State Processes and Labelled Transition Systems
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More on the Authors: 
“The Two Jeffs”

Jeff Kramer
Dean of the Faculty of Engineering and Professor of Distributed Computing 
at the Department of Computing at Imperial College London

ACM Fellow; Editor of IEEE’s Transactions on Software Engineering

Winner of numerous software engineering awards including best paper and 
outstanding research awards

Jeff Magee
Professor at the Department of Computing at Imperial College London

Long time member of the SE community with more than 70 journal and 
conference publications!

This book is based on their SE research into modeling concurrency over the 
past 20 years
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Ex.: Cruise Control System
Requirements

Controlled by three buttons
on, off, resume

When ignition is switched on 
and on button pressed, current 
speed is recorded and system 
maintains the speed of the car 
at the recorded setting
Pressing the brake, the 
accelerator, or the off button 
disables the system
Pressing resume re-enables the 
system

Two Threads: Engine and Control
Is the system safe?
Would testing reveal all errors?
How many paths through system?
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Models to the Rescue!

To answer, we need a model of the concurrent behavior of 
the system and then we need to analyze it

This is one benefit of models, they focus on one particular 
aspect of the world and ignore all others

Consider the model on the front of the Concurrency book

The picture shows a real-world train next to its model

Depending on the model, you can ask certain questions and 
get answers that reflect the answers you would get if you 
asked “the real system”
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Models to the Rescue!

For the train model, you might be able to ask

What color is the train? How long is it? How many cars does 
it have?

But not

What’s the train’s maximum speed?

How does it behave when a car derails?
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Models, continued

A model is a simplified representation of the real world

A model airplane, e.g., used in wind tunnels, models only the 
external shape of the airplane

The reduction in scale and complexity achieved by modeling 
allows engineers to analyze properties of the model

The earliest models were physical (like our model train)

modern models tend to be mathematical and analyzed by 
computers
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Models, continued

Engineers use models to gain confidence in the adequacy 
and validity of a proposed design

focus on an aspect of interest — concurrency
can animate model to visualize a behavior
can analyze model to verify properties

Models support hypothesis testing
we make observations and test against our model’s 
predictions
if predictions match observations, we gain confidence in the 
model; otherwise, we update model and try again
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Models for Concurrency

When modeling concurrency

our book makes use of a type of finite state machine known 
as a labeled transition system (LTS)

LTS == Model

These machines are described textually with a specification 
language called finite state processes (FSP)

FSP == Specification Language

Used to generate an instance of an LTS
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Models for Concurrency

These machines can be displayed and analyzed by an 
analysis tool called LTSA

Note: LTSA requires a Java 2 run time system, version 1.5.0 
or later

On Windows and Mac OS systems, you can run the LTSA 
tool by double clicking on its jar file

Note: Its not the most intuitive piece of software, but once 
you “grok it”, it provides all of the advertised functionality
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Modeling the Cruise 
Control System

We won’t model the entire system

lets look at a simplified example

Given the following specification
CRUISE = (engineOn -> RUNNING),

RUNNING = (speed -> RUNNING | engineOFF -> CRUISE).

We can generate a finite state machine that looks like this
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LTSA allows us to enter 
specifications and 
generate state machines 
like the ones on the 
previous slide

It can also be used to 
“animate” or step through 
the state machine

Lets see a demo

Note: animation at left 
shows the problem we 
encountered before with 
the cruise control system

LTSA



LTSA, continued

Using a modeling tool, like LTSA, allows us to understand 
the concurrent behaviors of systems like the cruise control 
system, BEFORE they are implemented

This can save a lot of time and money, as it is typically easier 
to test and evolve a model's behavior than it is to implement 
the system in a programming language
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Applying Concepts/
Models via Programming

The optional textbook uses Java to enable practice of these 
concepts

Java is

widely available, generally accepted, and portable

provides sound set of concurrency features

Java is used for all examples, demo programs, and 
homework exercises in the optional textbook
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Summary So Far

Concepts

We adopt a model-based approach for the design and 
construction of concurrent programs

Models

finite state machines to represent concurrent behavior

Practice

Book uses Java for constructing concurrent programs

We will be presenting numerous examples to illustrate 
concepts, models and demonstration programs
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Modeling Sequential 
Processes

We structure complex systems as sets of simpler activities

each represented as a sequential process

Processes can overlap or be concurrent, so as

to reflect the concurrency inherent in the physical world

or to offload time-consuming tasks

or to manage communications and/or other devices

Designing concurrent software can be complex/error prone

A rigorous engineering approach is essential
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Overall Approach 18

Concept of a process as 
a sequence of actions

Model processes as 
finite state machines

Program processes as 
threads in Java



Modeling Processes 19

Models are described using state machines

Labeled Transition System (LTS)

Described textually as finite state processes (FSP)

They are displayed and analyzed by the LTSA tool

Summary

FSP: textual form

LTS: data structure

LTSA: visualizer and analyzer



Modeling Processes

A process is the execution of a sequential program. It is 
modeled as a finite state machine that moves from state to 
state by executing a sequence of atomic actions

To the right is a “light switch”

it has two states and two actions

what does state zero represent?

A trace is a sequence of actions

For the light switch: on ➞ off ➞ on ➞ off ➞ on … 
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Specifying a process

FSP — action prefix

If x is an action and P a process then ( x ➞ P ) describes a 
process that initially engages in the action x and then behaves 
exactly as described by P. i.e. ( x ➞ P ) is also a process.

ONESHOT = (once -> STOP).

STOP is a predefined process
that tells LTSA to halt.

ONESHOT is a process; it executes “once” before halting

Convention: actions begin with lowercase letters; PROCESSES use 
all uppercase letters
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Repetitive behavior

Repetitive behavior uses recursion:

SWITCH = OFF,
OFF = (on -> ON),
ON = (off -> OFF).

You can apply substitution

SWITCH = OFF,

OFF = (on -> (off -> OFF)).

And again, to get a succinct definition

SWITCH = (on -> off -> SWITCH).
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All three 
produce the 
above LTS



Animation 23

1. click 
actions

2. see updates; 
(LTSA is not 
perfect; it can’t 
always show 
the updates)

3. view 
your 
trace 
here



Simple Example 24

TRAFFICLIGHT = (red -> green -> yellow -> TRAFFICLIGHT).

Trace

red ➞ green ➞ yellow ➞ red ➞ green ➞ yellow ➞ …



Adding Choice

If x and y are actions then 
( x ➞ P | y ➞ Q) is a process 
which initially engages in 
either of the actions x or y.

DRINKS =
(red -> coffee-> DRINKS 
|blue ->tea -> DRINKS).

red and blue are considered 
input actions; coffee and tea 
are output actions
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An input action is one which 
participates in a choice; someone 
has to select an action before the 
process can go on.



Nondeterministic Choice

Process (x ➞ P | x ➞ Q) describes a process which engages in x 
and then behaves as either P or Q.

As you can see, we have the same action on multiple branches

COIN = (toss -> HEADS | toss -> TAILS),
HEADS = (heads -> COIN),
TAILS = (tails -> COIN).

Tossing a coin.

In this case, LTSA
will randomly select a branch
to execute.
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Modeling Failure

We can use nondeterminism to model failure

Here we want to model a communication channel that is 
sometimes unreliable; an input can sometimes fail to produce 
an output

CHAN =
(in -> CHAN
|in -> out -> CHAN).
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Adding modeling power

In order to increase the power of our models, we can add 
indexes to both actions and processes

We can add an index to an action, like this…

in[i : 0 .. 3]

…which requires us to pick a value for the index when we 
execute the action

The index can then be referenced in later actions, carrying 
the value we picked

out[i]
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Example

BUFF = (in[i: 0..3] -> out[i] -> BUFF).

Single slot buffer

what goes in

must come out
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indexes are shortcuts

Note, this:

BUFF = (in[i: 0..3] -> out[i] -> BUFF).

is equivalent to this:

BUFF = (in[0]->out[0]->BUFF
       |in[1]->out[1]->BUFF
       |in[2]->out[2]->BUFF
       |in[3]->out[3]->BUFF).

indexed actions simply expand to all possible choices 
behind the scenes
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Magic Numbers

In this process

BUFF = (in[i: 0..3] -> out[i] -> BUFF).

“3” is a magic number

We can add flexibility to our models via indexed processes

BUFF(N=3) = (in[i:0..N]->out[i]-> BUFF).

Now we can change N to whatever value we need
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Computation

Indexes can be used to model calculation

const N = 1
range T = 0..N
range R = 0..2*N

SUM        = (in[a:T][b:T]->TOTAL[a+b]),
TOTAL[s:R] = (out[s]->SUM).

Here, our choices for indexes a and b influence the starting 
value s for process TOTAL; a + b is calculated and passed 
to TOTAL, setting the value for index s
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LTS for SUM 33



Guarded Actions 34

The choice (when B x -> P | y -> Q) means that when the 
guard B is true, then the actions x and y are both eligible to 
be chosen, otherwise only y can be selected.

COUNT(N=3)    = COUNT[0],
COUNT[i:0..N] = ( when(i<N) inc->COUNT[i+1]
                 |when(i>0) dec->COUNT[i-1]).



Process Alphabets

The alphabet of a process is the set of actions in which it 
can engage; LTSA can show a process alphabet on request

Process alphabets are implicitly defined by the actions in 
the process definition.

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]),
COUNTDOWN[i:0..N] = 
  (  when(i>0) tick->COUNTDOWN[i-1]
   | when(i==0)beep->STOP
   | stop->STOP).

The alphabet of COUNTDOWN is “start”, “tick”, “beep”, 
and “stop”
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Implementing Models

Implementing a model is typically straightforward
public void start() {
    counter = new Thread(this);
    i = N; counter.start();
  }

  public void stop() {
    counter = null;
  }

  public void run() {
    while(true) {
      if (counter == null) return;
      if (i>0)  { tick(); --i; }
      if (i==0) { beep(); return;}
    }
  }
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Implementation of 
COUNTDOWN

imagine this placed inside 
of a class that implements 

Runnable
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Concurrency: processes & threads 26 
©Magee/Kramer 2nd Edition 

threads in Java 

A Thread class manages a single sequential thread of control. 
Threads may be created and deleted dynamically. 

Thread 

run() 

MyThread 

run() 

The Thread class executes instructions from its method 
run(). The actual code executed depends on the 
implementation provided for run() in a derived class.  

class MyThread extends Thread { 
 public void run() { 
  //...... 
 } 

} 

Creating a thread object:   
 Thread a = new MyThread(); 
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threads  in Java 

Since Java does not permit multiple inheritance, we often 
implement the run() method in a class not derived from Thread but 
from the interface Runnable. 

Runnable 

run() 

MyRun 

run() 

public interface Runnable  { 
public abstract void run(); 

} 

class MyRun implements Runnable { 
public void run() { 

      // ..... 
   } 
} 

Thread 
target 

Creating a thread object:   
 Thread b = new Thread(new MyRun());  
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Concurrency: processes & threads 28 
©Magee/Kramer 2nd Edition 

thread life-cycle in Java 

An overview of the life-cycle of a thread as state transitions: 

Created Alive 

Terminated 

new Thread() 

start() 

stop(), or 
run() returns 

The predicate isAlive() can be 
used to test if a thread has been started but 
not terminated. Once terminated, it cannot 
be restarted (cf. mortals). 

start() causes the thread to call its 
run() method. 



40

Concurrency: processes & threads 29 
©Magee/Kramer 2nd Edition 

thread alive states in Java 

Once started, an alive thread has a number of substates : 

Runnable Non-Runnable 
suspend() 

resume() 

yield() 

Running 

dispatch 

start() 

stop(), or 
run() returns Also, wait() makes a Thread Non-Runnable,  

and notify() makes it Runnable    
(used in later chapters). 

Alive 
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Concurrency: processes & threads 30 
©Magee/Kramer 2nd Edition 

Java thread lifecycle - an FSP specification 

THREAD       = CREATED, 
CREATED      = (start          ->RUNNABLE  
               |stop           ->TERMINATED), 
RUNNING      = ({suspend,sleep}->NON_RUNNABLE   
               |yield          ->RUNNABLE    
               |{stop,end}     ->TERMINATED          
               |run            ->RUNNING), 
RUNNABLE     = (suspend        ->NON_RUNNABLE  
               |dispatch       ->RUNNING  
               |stop           ->TERMINATED), 
NON_RUNNABLE = (resume         ->RUNNABLE     
               |stop           ->TERMINATED), 
TERMINATED   = STOP. 
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©Magee/Kramer 2nd Edition 

Java thread lifecycle - an FSP specification 

end, run, 
dispatch are 
not methods of 
class Thread. 

States 0 to 4 correspond to CREATED, TERMINATED, RUNNABLE, 
RUNNING, and NON-RUNNABLE respectively. 

start

stop

stop

suspend

dispatch

stop

suspend
sleep

yield

end

run

stop

resume

0 1 2 3 4
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©Magee/Kramer 2nd Edition 

CountDown timer example 

COUNTDOWN (N=3)   = (start->COUNTDOWN[N]), 
COUNTDOWN[i:0..N] =  

  (when(i>0) tick->COUNTDOWN[i-1] 
     |when(i==0)beep->STOP 

  |stop->STOP 
   ). 

Implementation in Java?  
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Concurrency: processes & threads 33 
©Magee/Kramer 2nd Edition 

CountDown timer - class diagram 

The class CountDown derives from Applet and contains the 
implementation of the run() method which is required by Thread. 

Applet

init()
start()
stop()
run()
tick()
beep()

Runnable

CountDown

NumberCanvas

setvalue()

Threadcounter

display

target

The class NumberCanvas 
provides the display canvas. 
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CountDown class 

public class CountDown extends Applet  
                       implements Runnable { 
  Thread counter; int i; 
  final static int N = 10; 
  AudioClip beepSound, tickSound; 
  NumberCanvas display; 

  public void init()  {...} 
  public void start() {...} 
  public void stop()  {...} 
  public void run()   {...} 
  private void tick() {...} 
  private void beep() {...} 
} 
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CountDown class - start(), stop() and run() 

 public void start() { 
    counter = new Thread(this); 
    i = N; counter.start(); 
  } 

  public void stop() { 
    counter = null; 
  } 

  public void run() { 
    while(true) { 
      if (counter == null) return; 
      if (i>0)  { tick(); --i; } 
      if (i==0) { beep(); return;} 
    } 
  } 

COUNTDOWN Model 
start -> CD[3] 

STOP -> [predefined in FSP 
to end a process] 

CD[i] process 

  recursion transformed 
    into while loop 

  STOP when run() returns 

run -> CD[i:0..3] =!
  (while (i>0) tick -> CD[i-1]!
  |when (i==0) beep -> STOP!
  ).!
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CountDown 

 counter thread 

start() 

new Thread(this) 

target.run() 

created counter.start() 

alive 

terminated 

init() 

tick() 

beep() 

CountDown execution 
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CountDown 

 counter thread 

stop() 

new Thread(this) 

target.run() 

created counter.start() 

counter=null 

alive 

terminated 

tick() 
tick() 

CountDown execution 

start() 
init() 



Wrapping Up

Introduced the syntax of FSP and showed how to use it to 
create finite state machines that model single threaded 
processes

actions, choices, guarded choices, action/process indexes

Learned about LTSA and how to use it

In our next lecture, we’ll see how to model multiple 
concurrent processes and their interactions
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Coming Up

Lecture 13: Model-Based Approach to Designing 
Concurrent Systems, Part 2

Lecture 14 will be a review for the Midterm

Chapters 1-6 of Pilone & Miles

Chapters 1-4 of Breshears

Lectures 12 and 13
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