
© University of Colorado, 2010

Good-Enough
Design & Version
Control
Kenneth M. Anderson
University of Colorado, Boulder
CSCI 5828 — Lecture 11 — 02/16/2010

1

Goals

Review material from Chapter 5 of Pilone & Miles

Software Design: Need for Good OO A&D principles

SRP: Single Responsibility Principle

DRY: Don’t Repeat Yourself Principle

Review material from Chapter 6 of Pilone & Miles

Version Control & Configuration Management

Working “Without a Net”

Repository Management

Init, Add, Branch, Merge

2

iSwoon in Trouble

The previous chapter presents a design for associating
dates and events that was causing problems

Date objects maintain a list of its planned events

An Event object is a “dumb data holder” storing only a name

It has no logic of its own

Date objects provide methods that internally add events to a
planned date; The Date object contains information about
what events are allowed on a particular date

The UML diagram is shown on the next slide

3

4

+ seeMovie() : void
+ goToRestaurant() : void
+ orderFlowers() : void
+ goOnDate() : boolean

- validateEvent(event: Event) : boolean

Date

- validateEvent(event: Event) : boolean
FirstDate

- validateEvent(event: Event) : boolean
SecondDate

- validateEvent(event: Event) : boolean
ThirdDate

+ getName(): String
Event

+ getName() : String
- name : String = "SeeMovie"

SeeMovieEvent

+ getName() : String
- name : String = "GoToRestaurant"

GoToRestaurantEvent

+ getName() : String
- name : String = "OrderFlowers"

OrderFlowersEvent

events

*

UML Primer:

Each rectangle represents a class that can have attributes and
methods. A “+” symbols refers to “public” visibility; “-” indicates
private visibility. The “*” means zero or more. The “large triangle”
indicates inheritance. The arrow head indicates “one way navigation”;
in the diagram above Dates know about Events while Events are
blissfully unaware of Dates

UML Diagram

5

validateEvent(...)

:System

:FirstDate

:GoToRestaurantEvent

«create»

goToRestaurant(...)

«create»

validateEvent(...)

getName()

seeMovie(...)
«create» :SeeMovieEvent

getName()

return True

return True

goOnDate()

UML Sequence Diagram

6Bad Design (I)

This design has a lot of problems

The Event class is completely useless

Why not have Date store an array of strings?

Date’s API is pretty bad

Event creation methods are specified for all possible events;
that means that some dates have event creation methods for
events that are not valid for them!

The Date class has a list of allowable events but doesn’t show
it on the diagram (or it doesn’t show the list of planned events;
either way it has two lists but only shows one)

Bad Design (II)

But those are relatively minor issues

The main reason why this design is bad is that its inflexible
with respect to the types of changes that occur regularly for
this application domain

It can’t easily handle the addition of a new type of Event

It can’t easily handle changing the name of an existing Event

It can’t easily handle the changing of what events are valid for
what dates

7

Good Design

A primary goal in OO A&D is producing a design that makes

likely changes, straightforward

typically by adding a new subclass of an existing class

or by adding an object that implements a known interface

no need to recompile the system or even it bring it down

You can’t anticipate arbitrary changes and there is no
reason to invest time/$$ into planning for unlikely changes

So use good OO A&D principles to handle likely changes

8

Single Responsibility
Principle (SRP) (I)

The Date class has multiple responsibilities

tracking the events planned for a date

tracking the events allowed for a date

It has multiple reasons to change

The single responsibility principle says

Every object in your system should have a single
responsibility and all the object’s services should be focused
on carrying out that single responsibility

This is also known as “having high cohesion”

9

SRP (II)

Granularity?

When we say “responsibility” we are not talking about low
level concerns, such as

“insert element e into array a at position i”

but design level concerns, such as

“classify documents by keyword”

“store client details”

“manage itinerary of Jack and Jill’s second date”

10

SRP (III)

The existing iSwoon design is bad because each time we
add a new event

We need to add a new Event subclass

Add a new method to Date

Update each of Date’s subclasses (cringe!)

We need to migrate to a design, in which the addition of a
new type of event results in the addition of a new Event
subclass and nothing more

11

Textual Analysis (I)

One way of identifying high cohesion in a system is to do
the following

For each class C

For each method M

Write “The C Ms itself”

Examples

The Automobile drives itself

The Automobile washes itself

The Automobile starts itself

12

Textual Analysis (II)

Sometimes you need to include parameters in the sentence

The CarWash washes the Automobile itself

If any of these sentences doesn’t make sense then
investigate further

You may have discovered a service that belongs to a
different responsibility of the system and should be moved
to a different class

This may require first creating a new class before
performing the move

13

Textual Analysis (III)

Textual analysis is a good heuristic

While its useful for spot checking a design, its not perfect

But the underlying principle is sound

Each class in your design should “pull its weight”

have a single responsibility with a nice balance of both data
AND behavior for handling that responsibility

14

Other Problems

The iSwoon design also has problems with duplication of
information (indeed duplication can often lead to classes
with “low cohesion” that violate SRP

The duplication in iSwoon is related to Event Types

The names of event types appear in

Event subclass names

The name attribute inside of each event subclass

The method names in Date

In addition, duplication occurs with validateEvent() in each of
the Date subclasses

15

Don’t Repeat Yourself (I)

The DRY principle

Avoid duplicate code by abstracting out things that are
common and placing those things in a single location

Basic Idea

Duplication is Bad!

At all levels of software engineering: Analysis, Design, Code,
and Test

16

DRY (II)

We want to avoid duplication in our requirements, use
cases, feature lists, etc.

We want to avoid duplication of responsibilities in our code

We want to avoid duplication of test coverage in our tests

Why?

Incremental errors can creep into a system when one copy is
changed but the others are not

Isolation of Change Requests: We want to go to ONE place
when responding to a change request

17

Example (I)

Duplication of Responsibility

“The dog door should automatically close 30 seconds after it has
opened”

Where should this responsibility live?

It would be easy to put this responsibility in the clients

But it really should live in DogDoor (which method?)

18

recognize(bark: Bark)
BarkRecognizer

pressButton()
Remote

open()
close()
isOpen(): boolean
getAllowedBark(): Bark
setAllowedBark(bark: Bark)

open: boolean
DogDoor

door door

Example (II)

DRY is really about ONE requirement in ONE place

We want each responsibility of the system to live in a single,
sensible place

This applies at all levels of the project, including
requirements

Imagine a set of requirements for the dog door…

19

Example (III)

The dog door should alert the owner when something inside the
house gets too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system to
make sure it doesn’t activate when the dog door is open

The dog door should make a noise if the door cannot open because
of a blockage outside

The dog door will track how many times the dog uses the door

When the door closes, the house alarm will re-arm if it was active
before the door opened

20

Beware of Duplicates!!!

Example (IV)

The dog door should alert the owner when something inside the
house gets too close to the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system to
make sure it doesn’t activate when the dog door is open

The dog door should make a noise if the door cannot open because
of a blockage outside

The dog door will track how many times the dog uses the door

When the door closes, the house alarm will re-arm if it was active
before the door opened

21

Example (V)

The dog door should alert the owner when something is too close to
the dog door

The dog door will open only during certain hours of the day

The dog door will be integrated into the house’s alarm system

The dog door will track how many times the dog uses the door

Duplicates removed!

22

Example (VI)

Ruby on Rails makes use of DRY as a core part of its design

focused configuration files; no duplication of information

for each request, often single controller, single model update, single view

But prior to Ruby on Rails 1.2 there was duplication hiding in the
URLs used by Rails applications

POST /people/create # create a new person

GET /people/show/1 # show person with id 1

POST /people/update/1 # edit person with id 1

POST /people/destroy/1 # delete person with id 1

23

Example (VII)

The duplication exists between the HTTP method name and the
operation name in the URL

POST /people/create

Recently, there has been a movement to make use of the four major
“verbs” of HTTP

PUT/POST == create information (create)

GET == retrieve information (read)

POST == update information (update)

DELETE == destroy information (destroy)

These verbs mirror the CRUD operations found in databases
Thus, saying “create” in the URL above is a duplication

24

Example (VIII)

In version 1.2, Rails eliminates this duplication for something
called “resources”

Now URLs look like this:
POST /people

GET /people/1

PUT /people/1

DELETE /people/1

And the duplication is logically eliminated
Disclaimer: … but not actually eliminated… Web servers do not universally
support PUT and DELETE “out of the box”. As a result, Rails uses POST

POST /people/1 ; Post-Semantics: DELETE

25

Other OO Principles

Classes are about behavior
Emphasize the behavior of classes over the data

Encapsulate what varies
Use classes to achieve information hiding in a design

One reason to change
Promotes high cohesion in a design

Code to an Interface
Promotes flexible AND extensible code

Open-Closed Principle
Classes should be open for extension and closed for modification

26

Take CSCI 5448 for
more details!

New iSwoon Design 27

+ addEvent(Event e): boolean
+ goOnDate(): boolean

- dateNumber: int
Date

Event(allowedDates : int[], description : String
+ dateSupported(dateNo : int) : boolean

- allowedDates : int[]
- description : String

Event

events

*

Subclasses eliminated; Events now keep track of what
Dates they are allowed on; When you add an event to a
Date, Date calls Event.dateSupported() to validate it

You can easily add a new type of Event; just create a new
instance of Event with a different description; nothing else
changes! To add a new date, just increase the number

Impact on Tasks 28

With the right design, multiple tasks estimated to take days
may take only one (or less than one)

Task: Create Send Flowers

Event

Estimate: 2 days

Task: Create a Book

Restaurant Event

Estimate: 3 days

Task: Add Order Cab Event

Estimate: 2 days

A great design helps you be more productive!

Discussion 29

The underlying message of Chapter 5 is that everyone on
your team needs to understand good OO A&D principles

On a daily basis, you look for ways in which the design can
be improved

Small changes can occur via refactoring

Large changes need to become tasks and tracked like all
others

You welcome such changes since they’ll make life easier
and more productive down the line

Without a Net (I)

Doing software development without configuration
management is “working without a net”

Configuration management refers to both a process and a
technology

The process encourages developers to work in such a way that
changes to code are tracked

changes become “first class objects” that can be named,
tracked, discussed and manipulated

The technology is any system that provides features to enable
this process

30

Without a Net (II)

If you don’t use configuration management then

you are not keeping track of changes

you won’t know when features were added

you won’t know when bugs were introduced or fixed

you won’t be able to go back to old versions of your software

You would be “living in the now” with the code

There is only one version of the system: this one

You would have no safety net

31

Developer 1

Developer 2

Demo Machine

AAA

Without a Net (III) 32

Two developers need to
modify the same file for the
task they are working on

Developer 1

Developer 2

Demo Machine

A

A

A

Without a Net (IV) 33

They both download the file
from the demo machine,
creating two working copies.

working copy

Developer 1

Developer 2

Demo Machine

A

A2

A1

Without a Net (V) 34

They both edit their copies
and test the new functionality.

A1

A2

Developer 1

Developer 2

Demo Machine

A

A2

A1

Without a Net (VI) 35

Developer 1 finishes first and
uploads his copy to the demo
machine.

A1

A2

Developer 1

Developer 2

A2

A1

Without a Net (VII) 36

Developer 2 finishes second
and uploads his copy to the
demo machine.

Demo Machine

AA1A2

Without a Net (VIII) 37

This is known as “last check in wins”

At best, developer 1’s work is simply “gone” when the demo
is run; At worst, developer 1 checked in other changes, that

cause developer 2’s work to crash when the demo is run.

Demo Machine

AA1A2

Not Acceptable 38

This type of uncertainty and instability is simply not
acceptable in production software environments

That’s where configuration management comes in

The book uses the term “version control”

But in the literature, “version control” is “versioning” applied
to a single file while “configuration management” is
“versioning” applied to collections of files

39
1

2

3

4

5

2.1

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0

Another bug fix,
release v. 1.1

Versioning

40Particular versions of
files are included in...

... different versions of a
configuration

File A File B Configuration Z

1

2

3 4

5

1

2

3 4

5

v. 0.1

v. 1.0

v. 1.2

1 1

3 2

5 4

Configuration Management

Developer 1

Developer 2

Repository

AAA

With a Net (I) 41

Two developers need to modify the same file for separate tasks

Demo Machine

Developer 1

Developer 2

Repository

AA

A

With a Net (II) 42

They check the file out into their own working copies

Demo Machine

Developer 1

Developer 2

Repository

A

With a Net (III) 43

They modify their copies.

Demo Machine

A1A1

A2A2

Developer 1

Developer 2

Repository

A

With a Net (IV) 44

Developer 1 finishes first.

Demo Machine

A1 A1

A2A2

Developer 1

Developer 2

Repository

A

With a Net (V) 45

Developer 2 finishes and tries to check in, but...

Demo Machine

A1 A1

A2

A2

Developer 1

Developer 2

Repository

A

With a Net (VI) 46

the change is rejected, because it conflicts with A1

Demo Machine

A1 A1

A2A2

This is known
as “first check-

in wins”!

Developer 1

Developer 2

Repository

A

With a Net (VII) 47

What is sent back is an amalgam of A1 and A2’s changes

Demo Machine

A1 A1

A2A1/
A2

The file will not
be syntactically
correct and will

not compile!

Developer 1

Developer 2

Repository

A

With a Net (VII) 48

It is up to Developer 2 to merge the changes correctly!

Demo Machine

A1 A1

A3A3

Developer 1

Developer 2

Repository

A

With a Net (VII) 49

He tells the repository the conflict has been resolved and
checks the file in again

Demo Machine

A1 A1

A3

A3A3A3

Developer 1

Developer 2

Repository

A

With a Net (VII) 50

Developer 1 can now update his local copy and check the
changes on his machine

Demo Machine

A1 A1

A3

A3A3A3

Developer 1

Developer 2

Repository

A

With a Net (VII) 51

When they are both satisfied, the system can be deployed to
the demo machine and a successful demo occurs!

Demo Machine

A1 A1

A3

A3

A3

A3

Why Multiple Copies? 52

Old versioning systems
(RCS) did not allow
multiple developers to edit
a single file at a same time

Only one dev. could
“lock” the file at a time

What changed?
The assumption that
conflicts occur a lot
data showed they don’t
happen very often!

When two developers edit
the same file at the same
time, they often make
changes to different parts of
the file; such changes can
easily be merged

A1 A2+ A3=

Tags, Branches, and
Trunks, Oh My! 53

Configuration management systems can handle the basics
of checking out the latest version of a system, making
changes, and checking the changes back in

These changes are committed to what is typically called “the
trunk” or main line of development

git calls it the “master” branch

But configuration management systems can do much more
than handle changes to the version of a system that is
under active development

and that’s where tags and branches come in

Scenario (I)

In the book, a development team has released version 1.0
of a system and has moved on to work on version 2.0

they make quite a bit of progress when their customer reports
a significant bug with version 1.0

None of the developers have version 1.0 available on their
machines and none of them can remember what version of
the repository corresponded to “release 1.0”

This highlights the need for good “commit messages”

when you are checking in changes be very explicit about what
it is you have done; you may need that information later

54

551

2

3

4

5

2.1

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0

Another bug fix,
release v. 1.1

Remember this diagram? The numbers in boxes are
repository versions; the text in bold represent tags

56Scenario (II)

To fix the bug found in version 1.0 of their system, the developers

look at the log to locate the version that represented “release 1.0”

associate a symbolic name with that version number to “tag it”

In this case the tag might be “release_1.0”

create a branch that starts at the “release 1.0” tag

and fix the bug and commit the changes to the branch

They don’t commit to the trunk, since the associated files in the
trunk may have changed so much that the patch doesn’t apply

once the patch is known, a developer can apply it to the trunk
manually at a later point; or use a “merge/fix conflicts” approach

Branches are Cheap

In any complicated software system, many branches will be
created to support

bug-fixes

e.g. one branch for each official release

exploration

possibly one branch per developer or one per “risky” feature

e.g. switching to a new persistence framework

Because of this, modern configuration management
systems make it easy to create branches

57

Subversion Branches

In subversion, tags and branches are made in the same way

by creating a copy of the trunk (or any specified revision)

the project can be huge, containing thousands of files, and it
doesn’t matter, branch/tag creation is completed in constant
time and without the size of the repository changing

all that subversion does on a copy is note what the copy
represents by pointing at the “source” version number

58

subversion cheat sheet

Create a new repository
svnadmin create <repo>

Check in new project
svn import <dir> <repo>/
<project>/trunk

Check out working copy
svn checkout <repo>/
<project>/trunk <project>

Check for updates
svn update

Check in changes
svn commit

Creating a tag
svn copy -r <version>
<repo>/<project>/trunk
<repo>/<project>/tags/<tag>

Creating a branch
svn copy -r <version>
<repo>/<project>/trunk
<repo>/<project>/branches/<branch>

tag/branch creation identical!

59

Many Graphical Tools

Standalone Applications

Versions <http://versionsapp.com/>

Integration into Development Environments

TextMate <http://macromates.com/>

These are just examples, both for MacOS X, because that’s
my primary platform

but there are examples of these tools for multiple platforms

60

http://versionsapp.com
http://versionsapp.com
http://macromates.com
http://macromates.com

61

Versions: Browsing Project Files

62

Versions: Viewing Log Messages

63

Versions: Selecting different versions of a file for
comparison

64

Versions: Using Apple’s FileMerge to see differences

65

TextMate: Showing subversion information on files

66

TextMate: Selecting versions of a file for comparison

67

TextMate: Viewing the differences as a “patch” file

I think I like
FileMerge a bit
better! :-)

68

Distributed Configuration
Management (I)

With subversion and cvs (and many others), configuration
management depends on an “official” repository

There is a notion that somewhere there is a “master copy”
and that all working copies are subservient to that copy

This can be a limiting constraint in large projects with lots of
developers; why?

so much so that the large project may be tempted to write its
own configuration management system just to make progress

this is what happened with the Linux project; they produced git
because no other configuration management system met their
needs!

Distributed Configuration
Management (II)

In distributed configuration management systems, like git,
the notion of a centralized repository goes away

each and every developer has their own “official” repository

with a master branch and any other branches needed by the
local developer

then other developers can “pull” branches from publicly
available git repositories and “push” their changes back to
the original repository

You can learn more about git at the git tutorial
<http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html>

69

http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html

git cheat sheet

Create a new repository
git init

Check in new project
git add . ; get commit

Check out working copy
N/A

Check for updates
N/A

Check in changes
git add <file>; git commit

Creating a tag
git tag <tag> <version>

Creating a branch
git branch <branch>

Collaboration
git clone <remote> <local>
Update

git pull <remote> <branch>

Commit
git push <remote>

70

Accidental Difficulties?

svn
adds .svn dir to each directory in your repository

if you ever have supporting files stored in a directory of your
repository that your application reads, it needs to be aware of
the .svn dirs and ignore them

single repository version number even in the presence of
multiple projects

<repo>/<project1>/trunk
<repo>/<project2>/trunk

Make a change in project 2 and the version number for project 1
is incremented!

71

Accidental Difficulties?

git
The git FAQ seems to indicate that this tool has its own set of
accidental difficulties (you can’t avoid them!)

<http://git.or.cz/gitwiki/GitFaq>

I just don’t have enough personal experience with git to detail
them here.

72

http://git.or.cz/gitwiki/GitFaq
http://git.or.cz/gitwiki/GitFaq

Wrapping Up 73

Software Design

Everyone needs to understand good design principles

SRP: Single Responsibility Principle

DRY: Don’t Repeat Yourself Principle

Version Control & Configuration Management

Inject safety and confidence into software development

Lots of tools available

cvs, svn, git, Mercurial, Visual Source Safe

http://en.wikipedia.org/wiki/Mercurial_(software)
http://en.wikipedia.org/wiki/Mercurial_(software)

Coming Up

Lecture 12: Model-Based Approach to Designing
Concurrent Systems, Part 1

Lecture 13: Model-Based Approach to Designing
Concurrent Systems, Part 2

Lecture 14 will be a review for the Midterm

Chapters 1-6 of Pilone & Miles

Chapters 1-4 of Breshears

Lecture 12 and 13

74

