Good-Enough

Design & Version
Control

Kenneth M. Anderson
University of Colorado, Boulder
CSCIl 5828 — Lecture 11 — 02/16/2010

© University of Colorado, 2010




(Goals

» Review material from Chapter 5 of Pilone & Miles

» Software Design: Need for Good OO A&D principles
» SRP: Single Responsibility Principle
» DRY: Don’t Repeat Yourself Principle
» Review material from Chapter 6 of Pilone & Miles
» Version Control & Configuration Management
» Working “Without a Net”

» Repository Management
» Init, Add, Branch, Merge




ISwoon In Trouble

» The previous chapter presents a design for associating
dates and events that was causing problems

Date objects maintain a list of its planned events
» An Event object is a “dumb data holder” storing only a name

It has no logic of its own

Date objects provide methods that internally add events to a
planned date; The Date object contains information about
what events are allowed on a particular date

» The UML diagram is shown on the next slide




UML Diagram

Date

+ seeMovie() : void
+ goToRestaurant() : void

+ orderFlowers() : void
+ goOnDate() : boolean

- validateEvent(event: Event) : boolean

FirstDate

SecondDate

ThirdDate

- validateEvent(event: Event) : boolean

events

- validateEvent(event: Event) : boolean

Event

UM

Eac
met

private visibility. The

~
% ~ | + getName(): String

- validateEvent(event: Event) : boolean

SeeMovieEvent
- name : String = "SeeMovie"
+ getName() : String

_ Primer:

1%, 21/

OrderFlowersEvent
- name : String = "OrderFlowers"
+ getName() : String

nods. A “+” symbols refers to “public” visibility; “-
means zero or more. The “large triangle”

GoToRestaurantEvent
- name : String = "GoToRestaurant"
+ getName() : String

N rectangle represents a class that can have attributes and

Indicates

indicates inheritance. The arrow head indicates “one way navigation”;
In the diagram above Dates know about Events while Events are
blissfully unaware of Dates



I :sttem I

4 «create»

______ = | :FirstDate |

UML Sequence Diagram

|
|
goToRestaurant(...) !

> «Cr »
«create: = ‘ :GoToRestaurantEvent i

|
|
|
|
validateEvent(...) !
|
|

<—
getName() ,
return True —
|
seeMovie(...) |
= «create» !

__________________ L----=[ :SeelovieEvent |

validateEvent(...)

getName()

return True

goOnDate()




Bad Design (l)

» This design has a lot of problems

The Event class is completely useless

» Why not have Date store an array of strings?
Date’s API is pretty bad

» Event creation methods are specified for all possible events;
that means that some dates have event creation methods for
events that are not valid for them!

» The Date class has a list of allowable events but doesn’t show
it on the diagram (or it doesn’t show the list of planned events;
either way it has two lists but only shows one)




Bad Design (ll)

» But those are relatively minor issues

» The main reason why this design is bad is that its inflexible
with respect to the types of changes that occur regularly for
this application domain

>
>
>

t can’t easi

t can’t easi

t can’t easi
what dates

y
y
y

nand

nand

nand

e the addition of a new type of Event
e changing the name of an existing Event

e the changing of what events are valid for




Good Design

» A primary goal in OO A&D is producing a design that makes
likely changes, straightforward
» typically by adding a new subclass of an existing class
» or by adding an object that implements a known interface

no need to recompile the system or even it bring it down

» You can’t anticipate arbitrary changes and there is no
reason to invest time/$$ into planning for unlikely changes

So use good OO A&D principles to handle likely changes




Single Responsibility

Principle (SRP) (1)

» The Date class has multiple responsibilities

tracking the events planned for a date

tracking the events allowed for a date
» It has multiple reasons to change
» The single responsibility principle says

Every object in your system should have a single
responsibility and all the object’s services should be focused
on carrying out that single responsibility

» This is also known as “having high cohesion”




SRP (Il

» Granularity?

» When we say “responsibility” we are not talking about low
level concerns, such as

» “insert element e into array a at position /”
» but design level concerns, such as

» “classify documents by keyword”

» “store client details”

» “manage itinerary of Jack and Jill’'s second date”




SRP (Il

11

» The existing iSwoon design is bad because each time we
add a new event

» We need to add a new Event subclass
» Add a new method to Date
» Update each of Date’s subclasses (cringe!)

» We need to migrate to a design, in which the addition of a
new type of event results in the addition of a new Event
subclass and nothing more




Textual Analysis (l)

» One way of identifying high cohesion in a system is to do
the following

» For each class C
» For each method M
» Write “The C Ms itself”
» Examples
» The Automobile drives itself

» The Automobile washes itself

» The Automobile starts itself




Textual Analysis (Il)

» Sometimes you need to include parameters in the sentence
The CarWash washes the Automobile itself

» If any of these sentences doesn’t make sense then
investigate further

You may have discovered a service that belongs to a
different responsibility of the system and should be moved
to a different class

This may require first creating a new class before
performing the move




Textual Analysl

s (Il)

» Textual analysis is a good
» While its useful for spot c

» But the underlying princip

heuristic

necking a design, its not perfect

e IS sound

» Each class in your design should “pull its weight”

» have a single responsibility with a nice balance of both data
AND behavior for handling that responsibility




Other Problems

» The iSwoon design also has problems with duplication of
information (indeed duplication can often lead to classes
with “low cohesion” that violate SRP

The duplication in iSwoon is related to Event Types
» The names of event types appear in
Event subclass names
The name attribute inside of each event subclass
The method names in Date

In addition, duplication occurs with validateEvent() in each of
the Date subclasses




Don’t Repeat Yourself (1)

» The DRY principle

» Avoid duplicate code by abstracting out things that are
common and placing those things in a single location

» Basic |ldea
» Duplication is Bad!

» At all levels of software engineering: Analysis, Design, Code,
and Test




» We want to avoid duplication in our requirements, use
cases, feature lists, etc.

» We want to avoid duplication of responsibilities in our code

» We want to avoid duplication of test coverage in our tests
» Why?

Incremental errors can creep into a system when one copy is
changed but the others are not

Isolation of Change Requests: We want to go to ONE place
when responding to a change request




» Duplication of Responsibility

DogDoor
open: boolean
BarkRecognizer door | open() door Remote
recognize(bark: Bark) = close() < pressButton()
' isOpen(): boolean

getAllowedBark(): Bark
setAllowedBark(bark: Bark)

» “The dog door should automatically close 30 seconds after it has
opened”

» Where should this responsibility live?
It would be easy to put this responsibility in the clients

But it really should live in DogDoor (which method?)




Example (l)

» DRY is really about ONE requirement in ONE place

» We want each responsibility of the system to live in a single,
sensible place

» This applies at all levels of the project, including
requirements

» Imagine a set of requirements for the dog door...




Example

(1)

» The dog door should alert the owner when something inside the

house gets too C
» The dog door wil
» The dog door wil

ose to the dog door
open only during certain hours of the day

be integrated into the house’s alarm system to

make sure it doesn’t activate when the dog door is open

» The dog door should make a noise if the door cannot open because
of a blockage outside

» The dog door will track how many times the dog uses the door

» When the door closes, the house alarm will re-arm if it was active

before the door opened

Beware of Duplicates!!!




Example

(IV)

» The dog door should alert the owner when something inside the

house gets too C
» The dog door wil
» The dog door wil

ose to the dog door
open only during certain hours of the day

be integrated into the house’s alarm system to

make sure it doesn’t activate when the dog door is open

» The dog door should make a noise if the door cannot open because
of a blockage outside

» The dog door will track how many times the dog uses the door

» When the door closes, the house alarm will re-arm if it was active
before the door opened




» The dog door should alert the owner when something is too close to

the dog door
» The dog door wi

» The dog door wi

» The dog door wi

open only during certain hours of the day
be integrated into the house’s alarm system

track how many times the dog uses the door

» Duplicates removed!




Example (V)

» Ruby on Rails makes use of DRY as a core part of its design
» focused configuration files; no duplication of information

» for each request, often single controller, single model update, single view

» But prior to Ruby on Rails 1.2 there was duplication hiding in the
URLs used by Rails applications

» POST /people/create # create a new person

» GET /people/show/1  # show person with id 1
» POST /people/update/1 # edit person with id 1
» POST /people/destroy/1 # delete person with id 1




Example (V)

» The duplication exists between the HTTP method name and the
operation name in the URL

» POST /people/create

» Recently, there has been a movement to make use of the four major
“verbs” of HTTP

» PUT/POST == create information (create)
» GET == retrieve information (read)
» POST == update information (update)
» DELETE == destroy information (destroy)
» These verbs mirror the CRUD operations found in databases

» Thus, saying “create” in the URL above is a duplication




Example (V)

» In version 1.2, Rails eliminates this duplication for something
called “resources”

» Now URLs look like this:
» POST /people
» GET /people/1
» PUT /people/1
» DELETE /people/1

» And the duplication is logically eliminated

» Disclaimer: ... but not actually eliminated... Web servers do not universally
support PUT and DELETE “out of the box”. As a result, Rails uses POST

» POST /people/1 ; Post-Semantics: DELETE




Other OO Principles

» Classes are about behavior
Emphasize the behavior of classes over the data
» Encapsulate what varies
Use classes to achieve information hiding in a design
» One reason to change
Promotes high cohesion in a design
» Code to an Interface |
Promotes flexible AND extensible code
» Open-Closed Principle
Classes should be open for extension and closed for modification

Take CSCI 5448 for
more details!




New iIswoon Design

Date Event
- dateNumber: int events |- allowedDates : int[]
+ addEvent(Event e): boolean ” - description : String

Event(allowedDates : int[], description : String

+ goOnDate(): boolean + dateSupported(dateNo : int) : boolean

Subclasses eliminated; Events now keep track of what
Dates they are allowed on; When you add an event to a
Date, Date calls Event.dateSupported() to validate it

You can easily add a new type of Event; just create a new
instance of Event with a different description; nothing else
changes! To add a new date, just increase the number




Impact on lasks

With the right design, multiple tasks estimated to take days
may take only one (or less than one)

Task: Create Send Flowers
Event

Estimate: 2 days

Task: Create a Book
Restaurant Event

Estimate: 3 days

Task: Add Order Cab Event

Estimate: 2 days

A great design helps you be more productive!




DIsScussIon

» The underlying message of Chapter 5 is that everyone on
your team needs to understand good OO A&D principles

» On a daily basis, you look for ways in which the design can
be improved

Small changes can occur via refactoring

Large changes need to become tasks and tracked like all
others

» You welcome such changes since they’ll make life easier
and more productive down the line




Without a Net (l)

» Doing software development without configuration
management is “working without a net”

Configuration management refers to both a process and a
technology

» The process encourages developers to work in such a way that
changes to code are tracked

changes become “first class objects” that can be named,
tracked, discussed and manipulated

» The technology is any system that provides features to enable
this process




Without a Net (Il)

» If you don’t use configuration management then

» you are not keeping track of changes

» you won’t know when features were added

» you won’t know when bugs were introduced or fixed

» you won'’t be able to go back to old versions of your software
» You would be “living in the now” with the code

» There is only one version of the system: this one

» You would have no safety net




Without a Net (lll)

Two developers need to
modify the same file for the
task they are working on

Developer 1

Demo Machine

Developer 2




Without a Net (V)

They both download the file
from the demo machine,
creating two working copies.

Developer 1

Demo Machine
working copy

Developer 2




Without a Net (V)

They both edit their copies

Developer 1 and test the new functionality.

Developer 2

Demo Machine




Without a Net (VI)

Developer 1 finishes first and
Developer 1 uploads his copy to the demo

u machine.

Developer 2

Demo Machine




Without a Net (VII)

Developer 1

Developer 2

Developer 2 finishes second
and uploads his copy to the
demo machine.

Demo Machine




Without a Net (VIII)

This is known as “last check in wins”

Demo Machine

At best, developer 1’s work is simply “gone” when the demo
IS run; At worst, developer 1 checked in other changes, that
cause developer 2’s work to crash when the demo is run.




Not Acceptable

» This type of uncertainty and instability is simply not
acceptable in production software environments

That’s where configuration management comes in

The book uses the term “version control”

» But in the literature, “version control” is “versioning” applied
to a single file while “configuration management” is
“versioning” applied to collections of files




Versioning

Another bug fix,
release v. 1.1

1

{EE{

-

-

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0



Configuration Management

Particular versions of ... different versions of a
files are included in... configuration
File A File B Configuration Z

q? (1] (1)) wvo.

2 5 @)

3 v. 1.0

EEal S -

(5) (5] @) wv.1.2




With a Net (])

Developer 1 Repository

Developer 2 Demo Machine

Two developers need to modify the same file for separate tasks




With a Net (ll)

Developer 1

Developer 2

Repository

Demo Machine

They check the file out into their own working copies




With a Net (ll)

Developer 1

Developer 2

They modify their copies.

Repository

Demo Machine




With a Net (V)

Developer 1

Developer 2

Developer 1 finishes first.

Repository

Demo Machine




With a Net (V)

Developer 1

Developer 2

Repository

Demo Machine

Developer 2 finishes and tries to check in, but...




With a Net (VI)

Developer 1 This is known Repository
as “first check-
In wins”! u

Demo Machine

Developer 2

the change is rejected, because it conflicts with A1




With a Net (VII)

Developer 1

u The file will not u

be syntactically

correct and will .
Developer 2 not compile! Demo Machine

Repository

What is sent back is an amalgam of A1 and A2’s changes




With a Net (VII)

Developer 1

Developer 2

Repository

Demo Machine

It is up to Developer 2 to merge the changes correctly!




With a Net (VII)

Developer 1

Developer 2

Repository

Demo Machine

He tells the repository the conflict has been resolved and

checks the file in again




With a Net (VII)

Developer 1

Developer 2

Repository

Demo Machine

Developer 1 can now update his local copy and check the

changes on his machine




With a Net (VII)

Developer 1 Repository

Developer 2 Demo Machine

When they are both satisfied, the system can be deployed to
the demo machine and a successful demo occurs!




Why Multiple Copies?

» Old versioning systems
(RCS) did not allow
multiple developers to edit
a single file at a same time

Only one dev. could
“lock” the file at a time

» What changed?

The assumption that
conflicts occur a lot

data showed they don’t
happen very often!

When two developers edit
the same file at the same
time, they often make
changes to different parts of
the file; such changes can
easily be merged

Al + A2 A3




Tags, Branches, and

Trunks, Oh My!

» Configuration management systems can handle the basics
of checking out the latest version of a system, making
changes, and checking the changes back in

These changes are committed to what is typically called “the
trunk” or main line of development

» git calls it the “master” branch

» But configuration management systems can do much more
than handle changes to the version of a system that is
under active development

and that’s where tags and branches come in




Scenario ()

» In the book, a development team has released version 1.0
of a system and has moved on to work on version 2.0

they make quite a bit of progress when their customer reports
a significant bug with version 1.0

» None of the developers have version 1.0 available on their
machines and none of them can remember what version of
the repository corresponded to “release 1.0”

This highlights the need for good “commit messages”

» when you are checking in changes be very explicit about what
it is you have done; you may need that information later




Remember this diagram? The numbers in boxes are
repository versions; the text in bold represent tags

2.1

Another bug fix,
release v. 1.1

1

i

L

-

First draft of code, buggy

Fix some bugs, release v. 1.0

Begin adding spellcheck feature

spellcheck feature complete,
may have bugs

changes merged, more bugs
fixed, release v. 2.0



Scenario (l)

» To fix the bug found in version 1.0 of their system, the developers
look at the log to locate the version that represented “release 1.0”
associate a symbolic name with that version number to “tag it”

» In this case the tag might be “release_1.0"
create a branch that starts at the “release 1.0” tag
and fix the bug and commit the changes to the branch

» They don’t commit to the trunk, since the associated files in the
trunk may have changed so much that the patch doesn’t apply

once the patch is known, a developer can apply it to the trunk
manually at a later point; or use a “merge/fix conflicts” approach




Branches are Cheap

» In any complicated software system, many branches will be
created to support

» bug-fixes
» e.g. one branch for each official release
» exploration
» possibly one branch per developer or one per “risky” feature

» e.g. switching to a new persistence framework

» Because of this, modern configuration management
systems make it easy to create branches




Subversion Branches

» In subversion, tags and branches are made in the same way

by creating a copy of the trunk (or any specified revision)

the project can be huge, containing thousands of files, and it
doesn’t matter, branch/tag creation is completed in constant
time and without the size of the repository changing

» all that subversion does on a copy is note what the copy
represents by pointing at the “source” version number




subversion cheat sheet

» Create a new repository
svhadmin create <repo>
» Check in new project

svn import <dir> <repo>/
<project>/trunk

» Check out working copy

svn checkout <repo>/
<project>/trunk <project>

» Check for updates
svn update

» Check in changes
svn commit
» Creating a tag

svn copy -r <version>
<repo>/<project>/trunk
<repo>/<project>/tags/<tag>

» Creating a branch

svn copy -r <version>

<repo>/<project>/trunk
<repo>/<project>/branches/<branch>

» tag/branch creation identical!




Many Graphical Tools

» Standalone Applications

» Versions <http://versionsapp.com/>

» Integration into Development Environments

» TextMate <http://macromates.com/>

» These are just examples, both for MacOS X, because that’s
my primary platform

» but there are examples of these tools for multiple platforms



http://versionsapp.com
http://versionsapp.com
http://macromates.com
http://macromates.com

Versions: Browsing Project Files

v @@Ace
» [lirepo
v [ util
ﬂ create_release.py
v Qg misc
# WorkFlowEditorTest.py
# WorkFlowEditorTestPanel.py
» Lllimports
» [0l command_line
» [LJRhonda
» @l src [N

Browse

Dec 11,2008 4:03PM kena
Dec 9, 2008 10:07 AM kena
Dec 9, 2008 10:21 AM kena
Dec 9, 2008 10:21 AM kena
Dec 9, 2008 10:22 AM kena
Jan 25, 2008 10:29 AM kena
Jan 25, 2008 10:29 AM kena
Dec 9, 2008 10:12 AM kena
Dec 9, 2008 10:22 AM kena
Jan 26, 2009 12:49 PM kena
Dec 11, 2008 4:03 PM kena




Versions: Viewing Log Messages

BOOKMARKS ~
v © Ace a
A 14 ¥ January 26, 2009 (Monday) 1 change, 7 files

176 12:49 - kena
7 files Added some code that Rhonda wrote in preparing to create a workflow editor.

Jtrunk/misc/Rhonda
Jtrunk/misc/Rhonda/WorkFlowEditorTest.py
Jtrunk/misc/Rhonda/toolbar
Jtrunk/misc/Rhonda/toolbar/exit.bmp
/trunk/misc/Rhonda/toolbar/green.bmp
/trunk/misc/Rhonda/toolbar/person.bmp
/trunk/misc/Rhonda/toolbar/red.bmp

> P> > P> P> >

¥ January 21, 2009 (Wednesday) 1 change, 2 files

175 10:13 - kena
2 files Fixed a problem with importing samples and reporting on missing required attributes. Fixed another problem in which samples

could be deleted and cause group data structures to get out of date.

M Jtrunk/src/ACE/GUI/Editors /SampleBrowser.py
M Jtrunk/src/VERSION.txt

¥ January S, 2009 (Monday) 2 changes, 3 files

174 10:22 - kena
2 files Added a VERSION.txt file to track changes.
Added an EOL to the end of the LICENSE.txt file.

M Jtrunk/src/LICENSE.txt
A Jtrunk/src/VERSION.txt

173 10:05 - kena
1 file Added a check for an assertion error during OnimportSamples that correctly handles the situation when a csv file contains an

attribute that is not defined in the attribute editor.
M Jtrunk/src/ACE/GUI/Editors /SampleBrowser.py




Versions: Selecting different versions of a file for
comparison

[Original file in Working Copy (BASE) E [ Existing revision in Repository: E
‘l Display: entries | Before 4] [ Revision 4] Healw) l Display: entries | Before 3 [ Revision 4] Heaw)
Rev Date ‘Author  Log Message Rev Date |Author  Log Message {
150 2008/12/09 10:21:07 kena Updated create_release.py to no longer... 150 2008/12/09 10:21:07 kena Updated create_release.py to no longer...
134 2008/12/07 23:01:18 kena No longer have "ace-data” under “impo... :
21 2008/02/20 16:22:15 kena Updated the create_release scriptto de... 21 2008/02/20 16:22:15 kena Updated the create_release script to de...
1 2008/01/25 10:29:19 kena Initial import 1 2008/01/25 10:29:19 kena Initial import
4 entries, from 150 ‘ } 4 entries, from 150
L
Changed Paths Changed Paths
M Jtrunk/util /create_release.py M ftrunk/util /create_release.py
L3
M Show Source Of Copied Paths ‘ ’ ™ Show Source Of Copied Paths
# create_release.py ( Cancel ) ( Compare )
) //'




sys.exit(1) . ' sys.exit(1) 2
if not os.path.isdir(dev_dir): if not os.path.isdir(dev_dir):
print "Usage: create_release.py <ACE-DEVELOPMENT-DIRECTORY>" print "Usage: create_release.py <ACE-DEVELOPMENT-DIRECTORY>"
print "Error: <X¥s> is not a directory." ¥ (dev_dir) print "Error: <¥s> is not a directory." ¥ (dev_dir)
sys.exit(1) sys.exit(1)
sYc = 0s.path.join(dev_dir, "src") src_path = os.path.join(dev_dir, "src")
rep = os.path.join{dev_dir, "repo") imp_path = os.path.join(dev_dir, "imports")
rep_path = os.path.join{dev_dir, "repo")
src_cmp = os.path.exists(src_path)
rep_cmp = os.path.exists(rep_path) _2_. src_cmp = os.path.exists(src_path)
inp_cep = os.path.exists(imp_path)
if not (src_cep ond rep_cmp): . rep_cmp = os.path.exists(rep_path)
print "Usage: create_release.py <ACE-DEVELOPMENT-DIRECTORY>" —_
print "Error: s> is not an ACE Development Directory." X (dev_dir) if not (src_cmp and imp_cmp and rep_cmp):
sys.exit(1l) print "Usage: create_release.py <ACE-DEVELOPMENT-DIRECTORY>"
print "Error: <¥s> is not an ACE Development Directory." ¥ (dev_dir)
current_day = time.strftime("Mn-Xd-%v", time.localtine()) sys.exit(1)
dest_dir = os.path.dirname(dev_dir) current_day = time.strftime("An-%d-8Y", time.localtine())
dest_dir = os.path.join(dest_dir, "ACE-Ns" X (current_day))
dest_dir = os.path.dirnome(dev_dir)
if os.path.exists(dest_dir): dest_dir = os.path.join(dest_dir, "ACE-Ns" ¥ (current_day))
ST CATC L)
if not os.path.tsdir(dev_dir):
print "Usage: create_release.py <ACE-DEVELOPMENT-DIRECTORY="
print "Error: <Xs> is not a directory." ¥ (dev_dir)
sys.exit(1l)
src_path = os.path.join{dev_dir, “src*)
= 0S. .Join{dev_dir, “"imports®)
rep_path = os.path.join{dev_dir, "repo")
src_cmp = os.path.exists(src_path)
imp_cmp = os.path.exists(imp_path)
rep_cmp = os.path.exists(rep_path) -
if not (src_cmp ond imp_cmp and rep_cmp): I
print "Usoge: create_release.py <ACE-DEVELOPMENT-DIRECTORY>"
print "Error: <¥s> is not an ACE Development Directory." X (dev_dir)
sys.exit(1l)
current_day = time.strftime(“Mn-%d-%v", time.localtine())
-
dest_dir = os.path.dirnane(dev_dir) v
status: § differences | Actions

. /'




TextMate: Showing subversion information on files

TextMate File Edit View Text Navigation Bundles Wint

o000 « create_rele

v~ ACE

" misc

repo

Src

util

'; create_release.py

¥ create_release.py

dvYVvYYy

Ry | = |0 |

"""create release.py will ¢
Environment, aka ACE. It 1s

torm ACE-MM-DD-YYYY contain
A repo---that include, respec
a set of .csv Tiles that ca




TextMate: Selecting versions of a file for comparison
D O - - |

Revision Author
150 kena 09 Dec 2008 10:21:07 Updated create_re...

21 kena 20 Feb 2008 16:22:15 Updated the creat...
1 kena 25 Jan 2008 10:29:19 |Initial import

-~
Mo longer hawve "qce-data" under "imports"... so needed to change
the definition of what constitutes an "ACE development
directory".

( cancel ) oK) y




TextMate: Viewing the differences as a “patch” file

o000 | | svndiff create_release.py.20535.0

-r

Line:

PYTHONPATH: Undefined variable.
PYTHONPATH: Undefined variable.
PYTHONPATH: Undefined variable.
PYTHONPATH: Undefined variable.
PYTHONPATH: Undefined variable.
Index: /Users/kena/Desktop/ACE/util/create_release.py
--- /Users/kena/Desktop/ACE/util/create_release.py (revision 134)
+++ /Users/kena/Desktop/ACE/util/create release.py (revision 150)
@@ -41,14 +41,12 @@
sys.exit(1l)

src_path = os.path.join(dev dir, "src")
-imp path = os.path.join(dev dir, "imports")
rep_path = os.path.join(dev_dir, "repo")

src cmp = os.path.exists(src path)
-imp cmp = os.path.exists(imp path)
rep cmp = os.path.exists(rep_path)

-if not (src_cmp and imp cmp and rep _cmp):
+if not (src_cmp and rep cmp):
print "Usage: create release.py <ACE-DEVELOPMENT-DIRECTORY>"
print "Error: <%s> is not an ACE Development Directory." % (dev dir)
sys.exit(1)
@@ -64,13 +62,11 @@
sys.exit(1l)

dest _src_path = os.path.join(dest dir, "src")
-dest_imp path = os.path.join(dest dir, "imports")
dest _rep path = os.path.join(dest dir, "repo")
os.mkdir(dest dir)

copytree(src_path, dest src path)

-copytree(imp path, dest imp path)

copytree(rep path, dest rep path)

# remove .DS Store files and .pyc files

40 Column 1 Plain Text v v SoftTabs: 4 3 —

“ar

| think | like
FileMerge a bit
better! :-)



Distributed Configuration

Management (I)

» With subversion and cvs (and many others), configuration
management depends on an “official” repository

There is a notion that somewhere there is a “master copy”
and that all working copies are subservient to that copy
» This can be a limiting constraint in large projects with lots of
developers; why?
so much so that the large project may be tempted to write its
own configuration management system just to make progress

» this is what happened with the Linux project; they produced git
because no other configuration management system met their
needs!




Distributed Configuration

Management (Il)

» |In distributed configuration management systems, like git,
the notion of a centralized repository goes away

each and every developer has their own “official” repository

» with a master branch and any other branches needed by the
local developer

then other developers can “pull” branches from publicly
available git repositories and “push” their changes back to
the original repository

» You can learn more about git at the git tutorial

<http://www.kernel.org/pub/software/scm/qgit/docs/qittutorial.hntmli>



http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html

git cheat sheet

» Create a new repository
> git init

» Check in new project
» git add . ; get commit

» Check out working copy
> N/A

» Check for updates
> N/A

» Check in changes
» git add <file>; git commit

» Creating a tag

» git tag <tag> <version>

» Creating a branch
» git branch <branch>

» Collaboration
» git clone <remote> <local>
» Update

» git pull <remote> <branch>
» Commit
» git push <remote>




Accidental Difficulties?

» svn

» adds .svn dir to each directory in your repository

» If you ever have supporting files stored in a directory of your
repository that your application reads, it needs to be aware of
the .svn dirs and ignore them

» single repository version number even in the presence of
multiple projects
» <repo>/<project1>/trunk

» <repo>/<project2>/trunk

» Make a change in project 2 and the version number for project 1
IS Incremented!




Accidental Difficulties?

» git
» The git FAQ seems to indicate that this tool has its own set of
accidental difficulties (you can’t avoid them!)
» <http://qit.or.cz/qitwiki/GitFag>

» | just don’t have enough personal experience with git to detalil
them here.



http://git.or.cz/gitwiki/GitFaq
http://git.or.cz/gitwiki/GitFaq

Wrapping Up

» Software Design
» Everyone needs to understand good design principles
» SRP: Single Responsibility Principle
» DRY: Don’t Repeat Yourself Principle

» Version Control & Configuration Management

» Inject safety and confidence into software development

» Lots of tools available
» cvs, svn, git, Mercurial, Visual Source Safe



http://en.wikipedia.org/wiki/Mercurial_(software)
http://en.wikipedia.org/wiki/Mercurial_(software)

Coming Up

» Lecture 12: Model-Based Approach to Designing
Concurrent Systems, Part 1

» Lecture 13: Model-Based Approach to Designing
Concurrent Systems, Part 2

» Lecture 14 will be a review for the Midterm
» Chapters 1-6 of Pilone & Miles
» Chapters 1-4 of Breshears
» Lecture 12 and 13




